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Real Time Image Rotation Using
Dynamic Reconfiguration

F
ield programmable gate array (FPGA) components are widely used nowdays to implement
various algorithms, such as digital filtering, in real time. The emergence of dynamically
reconfigurable FPGAs made it possible to reduce the number of necessary resources to

carry out an image-processing task (tasks chain). In this article, an image-processing application,
image rotation, that exploits the FPGAs dynamic reconfiguration method is presented. This paper
shows that the choice of an implementation, static or dynamic reconfiguration, depends on the
nature of the application. A comparison is carried out between the dynamic and the static
reconfiguration using two criteria: cost and performance. It appears that, according to the nature
of the application, the dynamic reconfiguration can be less or more advantageous. In order to be
able to test the validity of our approach in terms of algorithm and architecture adequacy, we
realized an AT40K40-based board ‘‘ARDOISE’’.
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Introduction

Many applications in signal and image processing were
born with the arrival of the Field programmable gate
array (FPGAs) [1–4]. Since then, FPGAs have become
more efficient in terms of integration density and
running frequency [5, 6]. To satisfy the real-time
constraint, some complex processing required the
realization of multi-FPGA boards and more often
heterogeneous boards based on FPGAs and DSPs. In
these cases, the different algorithms are decomposed
into tasks where each, according to its size, is assigned
to an FPGA for its execution. We thus obtain
concurrent tasks by using parallelism by functions.
The goal of the designer was mainly to insure the
real-time constraint. Nowdays, this technology has
evolved so much that the real-time aspect is not the
only objective of the designer. While some user needs
1077-2014/02/$35.00
have remained the same, like defects inspection, pattern
recognition, filtering and image compression, FPGAs
have become more powerful in calculation. For some
processing, the constraint of 25 images per second is,
by far, insured by the new generation of FPGAs.
Consequently, these components are under-employed
leading to a decrease in the efficiency of the architecture.
FPGAs remain inactive during a great fraction of
the image acquisition time. Once received, the image
is processed at higher rate as compared to pixel
acquisition frequency and then the FPGA sits idle
waiting for the next image. This lost time is due to
the fact that until now, it was impossible to reconfigure
FPGAs to a new task during their inactivity. This is
due to two main reasons: (i) FPGAs require a great
deal of time to be reconfigured; (ii) to reconfigure the
FPGA it was necessary to reset the whole component
and consequently lose all the internal register contents.
r 2002 Elsevier Science Ltd. All rights reserved.
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Traditionally, once the configuration is optimized for a
well-defined application, it is loaded into the FPGA
and remains there until the end of the processing.
This kind of configuration is called the static configura-
tion. The arrival of the dynamically reconfigurable
FPGAs in 1989 [7] has allowed the optimization of
the FPGA’s temporal efficiency [8]. Thus, it is possible
to reduce the number of necessary logic gates to perform
an image-processing application consisting of a succes-
sion of algorithms by time sharing between the different
tasks with the available resources. When a cell (or a
block of cells) has finished the execution of a task, it
can be reconfigured to accomplish another task.
An FPGA is said to be dynamically reconfigurable
when it is possible to reconfigure only a part of
the component while other parts are executing the
algorithm.

Most of the works met in literature [9–12] made the
hypothesis that the user of the FPGA has chosen the
solution based on the dynamic reconfiguration and they
only tried to help him in the optimization of his
implementation. Thus, the paper [9] examined in detail
the optimization of the implementation of a pipelined
application by using run-time reconfigurable FPGAs.
That study led to a striped FPGA architecture. This
architecture permits an optimal implementation of
pipelined applications, which integrates an on-chip
configuration cache memory. However, the paper did
not undertake a comparison between the static-config-
uration-based solution and the run-time-based one, and
it did not consider the case where the application does
not admit a pipeline. The paper [10] introduces
morphing, a technique for enhancing the efficiency of
reconfigurable pipelines at run-time. It describes the use
of morphing in the emulation of large virtual pipelines
by small physical pipelines. The Xilinx 6200 PCI is given
as good and flexible platform for implementing virtual
pipelines. Morphing works best when reconfigurable
time is comparable to the pipeline computation time.
The paper [11] treats in addition to the partitioning, the
scheduling of the tasks. The advantage of the approach
presented in this paper is the capability to model
communication between nonadjacent on-chip config-
urations and multiple levels of logic. Reference [12]
introduces SCORE. The SCORE permits partitioning
FPGA configurations into parallel and fixed-size pages.
The paged model provides a framework for device size
abstraction, automatic dynamic reconfiguration and
automatic performance scaling on larger devices, with-
out recompilation. SCORE aims to automate the
partitioning process.
Paper [13] highlights the diversity and multiplicity of
systems and applications to which configurable comput-
ing can be used. Various systems such as SPYDER,
RENCO, Firefly and BioWatch are given to show well
the differences between the static- and dynamic-reconfi-
guration-based systems. This paper concludes by in-
dicating that the static reconfiguration is used to
improve the performances in terms of speed and
resource utilization, however, the dynamic reconfigura-
tion has the advantage of being adapted to the dynamic
environment. Even though this paper has given in a
clear manner the definitions and the differences between
the static and dynamic reconfigurations, it did not
propose any method to make a choice between the two
reconfiguration modes.

Our work comes before these works that have as
objective the optimization of partitioning and of
scheduling for an implementation based on the dynamic
reconfiguration. Indeed, we notice nowadays that many
applications are still based on the static reconfiguration.
So, based on this remark, it appears that it is worth to
ask the following question: in which case we use the
static reconfiguration and in which case we use the
dynamic reconfiguration?

Often, the designer has to decide at the beginning of
his project on which solution to retain: based either on
the static reconfiguration or on the dynamic one. Then,
he starts the optimization of the chosen implementation.
With equal performances, the designer has to choose the
cheapest solution. Our paper classifies the different
applications based on their nature and evaluates their
costs for the two cases: dynamic and static implementa-
tions. These implementations are evaluated on a given
FPGA. For each case, examples are given to support
our analysis. At the end of this paper, we evaluated real-
time image rotation implementation on a board that we
have realized using the two reconfiguration types.

It is difficult to choose an application that highlights
both the advantages and limitations of the dynamic
reconfiguration. The image rotation is a typical example
where the dynamic reconfiguration (DR) can be
exploited in a very interesting manner. Indeed, the
algorithm that we have chosen requires operator
reconfiguration for each image row. The choice of this
algorithm has been motivated by its structure IIR and
FIR filters. The achievement of such a task by a
conventional FPGAs would require the use of several
FPGAs that increases the number of necessary
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resources. For this application, we have realized a board
based on the AT40K40 FPGA (ATMEL).

This article is structured as follows. The following
section gives a brief review of the structures of the static
and dynamic reconfigurable FPGAs. The next section
presents the analysis criteria of the two implementa-
tions, static versus dynamic reconfiguration. The sub-
sequent section studies the dynamic reconfiguration
case-by-case, depending on the nature of the applica-
tion, The next section describes the image rotation
algorithm that was implemented. The following section
deals with the analysis of the two implementation ap-
proaches (static and dynamic) of the image rotation
algorithm according to the criteria defined in the section
which presents the analysis criteria. Finally, the last
section gives a comparison between the results obtained
by the dynamic and static approaches.

Field-Programmable Gate Arrays

Static reconfigurable FPGAs

Conventional FPGAS form the basis of many applica-
tions [2–5]. These components have allowed the
association of the flexibility and the specificity. Several
applications can be realized by specialized architectures
by simply configuring the FPGAs each time the FPGA-
based board is supplied. An FPGA is composed of
configurable logical blocks (CLBs), in/out blocks
(IOBs), which connect the logic cells to external signals,
in/out (IO), and programmable routing network inter-
connecting the cells.

Dynamic reconfigurable FPGAs

Compared to traditional FPGAs, dynamically reconfi-
gurable FPGAs offer the possibility of sharing in time
the available resources in the FPGA between the
different tasks of an application. This can be accom-
plished by using either total or partial dynamic
reconfiguration. For an application and at a given time,
one or several parts of the FPGA can be inactive. It is
then possible to reconfigure them for other tasks by
using partial reconfiguration. Some components allow a
direct access to the resources of configuration by simple
addressing. For example, the ATK40 series (ATMEL)
allows the reconfiguration of any area of the component
by modification of the SRAM configuration contents.
The FPGA is seen, by the user, as a memory for which
one can modify the content by putting data (8/16 bits) in
the necessary addresses (24 bits) for the reconfiguration.
Hence, it is possible to modify the content of a logic
block independent of the others.

Criteria Analysis of the Static and the Dynamic
Implementations

The analysis of the static implementation will be carried
out through the evaluation of two criteria: the im-
plementation cost and the processing performance. The
cost will be designated here by the number of CLBS
(NStat_CLBS= computation cells+control cells) occu-
pied by the algorithm. The smaller is this number, the
better is the implementation. Here, we do not take into
account the energy consumption nor the hardware
complexity of the peripherals, such as external mem-
ories, data bandwidth, and address bus. The complexity
and the variety of peripherals make difficult the
estimation of their costs. The processing performance
criterion is given by the necessary execution time
TStat_exec to accomplish the application. TStat_exec is
expressed only by the product of the number of pixels N
(image size) to be processed and the iteration period
TStat_iteration of the algorithm. In the same manner, we
define the dynamic cost by NDynam_CLBS and the
performance criterion by TDynam_exec With equal perfor-
mances the contribution of the dynamic reconfiguration
will be given by the ratio [(NCLBs_Stat�NCLBs_Dynam)/
NCLBs_Stat]� 100%. For some applications using dy-
namic reconfiguration, it may be preferable to have less
performances in order to benefit from reductions in the
number of CLBS used. It is necessary, in this situation,
to compare the reduction in cost to the loss in
performances.

The Dynamic Reconfiguration Case-by-Case

Up to date, many investigations have been conducted in
order to optimize implementation, partitioning, and
scheduling tasks using the dynamic reconfiguration.
However, few works have been devoted to help the user
to choose between an implementation that uses the
static configuration and an implementation based on the
dynamic reconfiguration. Our work deals with this
subject and gives an approach that allows, from the
start, the user to make a choice between the two
implementations. In the following, we are going to
enumerate different cases in which dynamic reconfigura-
tion can be more or less interesting.



280 E. BOURENNANE ETAL.
Pipelined applications

Often, image-processing applications consist of a
succession of tasks, Taski (i= lyM). This type
of applications can be implemented following either
a dynamic or static configuration as shown in the
diagram given in Figure 1. An example of such kind
of applications is given in [8]. It deals with video coding
and it consists of four stages that can be pipelined:
discrete wavelet transform, quantization, run-
length coding and entropy coding. Here, the authors
have succeeded in reducing the necessary resources
(CLBs) needed to implement this encoder. They
used only one FPGA, CLAY31 of National Semicon-
ductor, instead of three FPGAs of the same type.
This is achieved by using rapid run-time reconfigura-
tion instead of static configuration. Indeed the
implementation that does not employ run-time re-
configuration can present, when needed, better
performances, an execution time which is three
times smaller than that obtained when using
runtime reconfiguration. The authors, however,
preferred a reduction in the number of gates for
congestion and power consumption reasons because the
device was aimed for portable handheld wireless
transceivers.

Discussion of the static implementation. In this case, the
user selects the FPGA component that best fits his/her
needs at the lowest cost. The optimum is obtained when
Figure 1. Static and dynamic implementations.
the processing frequency of the designated FPGA
corresponds exactly to the real-time constraint. An
economy, in internal resources of the FPGA, can be
obtained by choosing the execution time (NTStat_iteration)
equal to the image acquisition time T. Thus, one
obtains a static implementation having a maximum
spatiotemporal efficiency of 100%. This means that at
any time all FPGA resources are utilized (active). The
cost and performance of such an implementation are
given by

Stat ¼ NStat CLB

¼
XM
i¼1

NTaski CLB þNControle CLB and PerfStat

¼ TStat exec ¼ NTStat iteration ¼ T ð1Þ

Discussion of the dynamic implementation. In the exam-
ple given above, the implementation is done by
using global reconfiguration with K partitions (here
K= 2), and each partition is composed of 2 tasks.
The processing has been divided into two partitions
(taskl+task2) and (task3+task4) of equal areas
(NCLBS). The iteration period of each partition depends
on the implemented algorithm. Although the areas
of the two partitions are equal, their iteration
periods can be different. The time duration T allocated
to the processing is identical to that of the static
case. One can easily find that the real-time constraint
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leads to

T ¼ NTStat iteration ¼ N
XK
i¼1

Titeration i þ KTconfig ð2Þ

Since we are dealing with a global reconfiguration,
the reconfiguration times are equal: Tconfig_1=
Tconfig_2=Tconfig_K=Tconfig. We assume, without loss
of generality, that the two partitions (taskl+
task2, task3+task4) run at the same fre-
quency (fiteration_1=fiteration_2=fiteration_K) Titeration_1=
Titeration_2= Titeration_K=TDynam_iteration). Therefore,
from Eq (2), we obtain

NTStat iteration ¼ KNTDynam iteration þ KTconfig ð3Þ

From where we can deduce the maximum period (the
minimum frequency) with which the dynamic FPGA
can run in order to reach the same performances as the
static FPGA:

TDynam iteration ¼
TStat iteration

K
�

Tconfig

N
ð4Þ

If we want to obtain a gain in the area of the order K the
dynamic FPGA has to be (as well as the associated
external memories) at least K times faster than the static
FPGA.

CostDynam ¼ NDynam CLB

¼ MAX
j¼ðK�1Þ=2

j¼0

X2jþ2

i¼2jþ1

NTaski CLB þNControl CLB

 !

and

PerfDynam ¼ TDynam exec ¼ TStat exec

¼ KNTDynam iteration þ KTconfig ¼ T ð5Þ
Figure 2. Static implementation with spatial efficiency lower tha
In this case, the question arises as to what implementa-
tion to choose?

If it is clear that with equal performances, we have
obtained by using the DR a diminution of the cost (the
area is reduced by a factor K); however, the answer
to the question is obvious because we have to keep in
mind that the dynamic FPGA has to be K times faster
than the static one. Hence it would be judicious to take
into account the following points before making any
choice:

K costs comparison:
F In terms of development time.
F Price of the components.
F External resources: memories and bandwidth.

K reuse and flexibility of the board in other cases and
applications

K power consumption

In summary, if the static implementation presents a
spatiotemporal efficiency of l00%, it is difficult (perhaps
even expensive) to replace it by a dynamic implementa-
tion.

Case where the application does not present parallelism by
functions

In this case, if the nature of the application does not
allow us to have the pipeline the static implementation
will present inevitably a spatial efficiency lower than 1.
In Figure 1, it is sufficient to leave inactive one to three
tasks among the four (see Figure 2). Such cases can
appear when the processing to be performed is condi-
tioned by the nature of the data. The example of neural
n 100% and its corresponding dynamic implementation.



Figure 3. The three stages of the back propagation training
algorithm.
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networks using run-time circuit reconfigura-
tion (RRANN: run-time neural artificial reconfigured
network) is a good example to illustrate such cases
[14–16]. The back propagation learning algorithm is
partitioned into three sequentially executing stages:
feed-forward, back propagation, and update (see Figure
3). Only one of them is loaded into the FPGA at a time.
These three stages are mutually exclusive in time i.e.
the computations in any stage cannot proceed until
the previous stage finishes the execution and
the computation of all the data present at its input.
This process of reconfiguration and execution continues
until the training algorithm converges. The implemented
neural network is formed by 60 neurons, equally
repartitioned over four layers with a total of 10 930
connections. In order to determine the gain brought
by the dynamic reconfiguration, this algorithm has
been implemented for both the static and run-time
reconfigured systems on an FPGA CLAY31 of National
Semiconductor. With equal performances, the conver-
gence is obtained in 1.93 ms for the two implementa-
tions, the run-time implementation has necessitated
18904 CLBS while the static implementation has
consumed 50764 CLBS, so the gain in area is about
62.76%. The example given in [17] shows the case where
the process to be executed depends on the nature of the
data, and it concerns adaptive wavelet packet applica-
tions. It is shown that using dynamically reconfigurable
logic is very suitable for adaptive wavelet packet
applications.

Let us analyze costs and performances of the two
implementations given in Figure 2.

Discussion of the static implementation. The spatial
efficiency being weak (at any time, there exist some
parts that are inactive in the FPGA), the cost due to the
number of CLBS used will certainly be high compared
to the dynamic reconfiguration. The cost is given by Eq
(1). The performance is also given by Eq (1) but needs to
be explained. Assume in Figure 2, that there is only one
task (among M= 4) that is active at a given time and
that the whole processing requires the execution of M
tasks. The allowed time to achieve the processing is
always equal to the image acquisition time T. The
iteration period of the static implementation has to
satisfy the real-time constraint and leads to the
following equality:

PerfStat ¼ TStat exec ¼ MNTStat iteration ¼ T ð6Þ

The processing frequency must be higher than in
Pipelined applications by a factor M to satisfy the
real-time processing constraint.

Discussion of the dynamic implementation. If the tasks
are exclusive in time, only one task is loaded and
executed at a time, both the cost and the performance
are given by

CostDynam ¼NDynam CLB ¼ MAXðNTaski CLB

þNControl CLBÞ for i ¼ 1 . . .M

andPerfDynam ¼ TDynam exec ¼ TStat exec

¼ MNTStat iteration ¼ MNTDynam iteration

þMTconfig ¼ T ð7Þ

gainCLBs%

¼
NStat CLBs �MAX

i¼M

i¼1
Dynam CLBsðtaskiÞ

NStat CLBs
� 100

With equal performances, the dynamic reconfiguration
allows us to have a gain in the number of CLBS. Eq (7)
shows the necessity to have a dynamic FPGA faster than
the static one.

TDynam iteration ¼ TStat iteration �
Tconfig

N
ð8Þ

According to relation (8), the execution fre-
quency of the dynamic FPGA can be reduced by
increasing the amount of data (N) to be processed.
However, it is necessary to raise the external memory
capacity.

General case

The application may or may not present a pipe-
line. Furthermore, its execution time on a static FPGA
(in static mode) can be less then the image acquisi-
tion time (MNTStat_iterationT). This case corresponds
to the static implementation having a spatiotemporal
efficiency lower than 1. The spatial efficiency is
lower than 1 because all the tasks active or inactive
are loaded into the FPGA in the beginning of
the application, but only one is active at a time.
Moreover, if the static FPGA used is too fast compared
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with the application requirements, it will be inactive
during a fraction of the image acquisition time. Thus, we
obtain a temporal efficiency less than 1.

Discussion of the static implementation. The cost and the
performance are given by

CostStat ¼NStat CLB ¼
XM
i¼1

NTaski CLB þNControl CLB

PerfStat ¼TStat exec ¼ MNTStat iteration þ Tinactivity ¼ T

ð9Þ

We can notice the presence of Tinactivity in the relation
PerfStat. This inactivity time is taken into account in
the static performance because it corresponds to the
mismanagement of the available time.

Discussion of the dynamic implementation. In this
case, we will show that we can obtain by using DR
a gain in area and in execution frequency while keeping
the same performance as in the static case. The itera-
tion frequency of the dynamic implementation
fDynam_iteration can even be lower than the iteration
frequency of the static implementation. We can
also choose for such application a faster dynamic
FPGA so that the number of necessary CLBs will be
reduced.

gainCLBs% ¼

NStat CLBs �MAX
i¼M

i¼1
Dynam CLBsðtaskiÞ

NStat CLBs
� 100

CostDynam ¼ NDynam CLB

¼ MAX NTaski CLB þNControl CLB

� �
for i¼ 1 . . .M

ð10Þ

PerfDynam ¼ TDynam exec ¼ TStat exec

¼ MNTStat iteration þ Tinactivity

¼ MNTDynam iteration þMTconfig ¼ T

The necessary iteration period is such that

TDynam iteration ¼ TStat iteration þ
Tinactivity

MN
�

Tconfig

N
ð11Þ

The inactivity time (idle time) of the static implementa-
tion has a positive effect on the iteration period of the
dynamic implementation. If relation (12) is satisfied,
then the dynamic iteration frequency can be lower than
the static iteration frequency.

ðTinactivityÞStat � MTconfig ) TDynam iteration

� TStat iteration ð12Þ

Thus we obtain a gain in area and in frequency by the
use of the dynamic reconfiguration.

Image Rotation Algorithm

We often meet the problem of image interpolation
when we want to restore an analog image from
its samples. The analog form of the image allows
us thereafter to carry out operations of up-sampling
(super-resolution, zooming) and to shift the image
by noninteger values. Image rotation is based on
B-Spline interpolation used in image compression.
It is very helpful for character recognition. We
have chosen as application the image rotation whose
principle, according to the algorithm of Unser, is based
on three translations : translations following rows then
columns and again following rows [18,19]. The transla-
tion is different for each row (or column). The proposed
implementation hereafter can be easily adapted to up-
sampling.

B-Spline functions

B-Spline functions bn(x) are polynomials of order n,
continuous and continuously differentiable up to order
(n�1). A B-Spline is defined by the following convolu-
tion:

�nðxÞ ¼ �n�1ðxÞ 	 �0ðxÞ ð13Þ

with b0(x) the B-Spline of order zero:

�0ðxÞ ¼
1 for xj jo0:5
0 elsewhere

�
ð14Þ

Then, we deduce the next equation

�nðxÞ ¼
Xnþ1

j¼0

ð�1Þj

n!
Cj

nþ1 xþ
nþ 1

2
� j

� �n

� u xþ
nþ 1

2
� j

� �
ð15Þ

where

Cj
nþ1 ¼

ðnþ 1Þ!
j!:ðnþ 1 � jÞ!

and uðxÞ ¼
1 si x � 0
0 si xo0

�



Figure 4. Representation of p and p0 in (O, x, y) plane.
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The representation of the gray levels I(k) by a
continuous function I(x) is given by

IðxÞ ¼
XN
i¼1

CðiÞ�nðx� iÞ N is the number of pixels

ð16Þ

I(x) is such that

IðxÞx¼k ¼ IðkÞ ¼
XN
i¼1

CðiÞ�nðk� iÞ

¼ original digital image ð17Þ

Knowing the sequence of pixels I(k) and coefficients
bn(k�j), it is possible to deduce C(j) from Eqn (17) and
to substitute it into (16).

In the case of a B-Spline of order 3 (b3(x)), we obtain

IðkÞ ¼
1

6
Ck�1 þ

4

6
Ck þ

1

6
Ckþ1 ) CðzÞ

¼
6

z�1 þ 4 þ z
IðzÞ

¼
1:6

ð1 þ 0:26z�1Þð1 þ 0:26zÞ
IðzÞ ð18Þ

The image rotation

The image rotation is a geometrical problem
that consists of pivoting each point of the space around
an axis. As shown in Figure 4, given a point p
of coordinates (x, y) in an orthonormal reference
frame of origin O. Assume another point p0 in the
same reference frame such that the vectors Op and Op0

are of equal magnitudes and form an angle.

The coordinates of p can easily be determined from
those of p0 by using the rotation matrix R(y):

Rð�Þ ¼
cosð�Þ � sinð�Þ

sinð�Þ cosð�Þ

� �

¼
1 � tanð�=2Þ

0 1

� �
1 0

sinð�Þ 1

� �

�
1 � tanð�=2Þ

0 1

� �
¼ ABA

with

A ¼
1 � tanð�=2Þ
0 1

� �
; B ¼

1 0
sinð�Þ 1

� �
ð19Þ
X 0

Y 0

� �
¼ Rð�Þ

X
Y

� �

The rotation matrix R(y) can be decomposed into a
sequence of unidimensional translations along the
directions x and y. Matrices A and B are translation
matrices following x and y, respectively. The image
rotation is thus obtained by a series of translations by
non integer values. The shifted image by a distance D is
obtained by

Iðk� �Þ ¼
X
j

CjB3ðk� �� jÞ ð20Þ

B3ðxÞ ¼

ð2þxÞ3

6
for � 2oxo� 1

ð4�6x2�3x3Þ
6

for � 1oxo0
ð4�6x2þ3x3Þ

6
for 0oxo1

ð2�xÞ3

6
for 1oxo2

8>>>><
>>>>:

ð21Þ

and the up-sampled image by

Iðk=mÞ ¼
X
j

CjB3ðk=m� jÞ ð22Þ

Analysis of the Static/Dynamic Implementations

In Figure 6, the image rotation algorithm is decom-
posable into a succession of three translations: following
the rows, then columns and again rows. These three
phases cannot be fully implemented in one AT40K40
FPGA. The inherent sequential aspect of this applica-
tion already gives a first temporal repartition of the
different subtasks. The study presented in this para-
graph enables the examination of the performance and
cost of such a decomposition. Tests are done on the
ARDOISE board (Architecture Reconfigurable Dyna-
mically Oriented Image and Signal Embarcable).



Figure 5. The structure of the filter.
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Figure 7(a) gives the block diagram of the board
prototype. The main task of the DSP is to load the
bitstream in parallel into the FPGA.

The internal data coding and arithmetic computations
of the filter (Figure 5) are performed with 13-bit
Figure 6. Image rotation with three consecutive translations.
resolution [20]. The results of the implementation
presented here are based on the global reconfiguration.
The two SRAMs function in ‘‘Ping-Pong’’ mode;
i.e. when one is in the writing mode the other is in the
reading mode and vice versa. The solution retained
uses a data parallelism of order 4; four data points are
processed at a time. At every memory access, two data
points (2� 16bits) are read. The memory access
frequency is 40MHz (twice the processing frequency).
In the FPGA, two samples are processed simultaneously
and the following two samples are processed with a
25 ns time delay (l/2 cycle of the processing clock
period).

At the output of the FPGA, the data are read out
at a frequency of 40 MHz (see Figure 8). The anticausal
part of the filter is implemented in the same manner.
One reconfiguration is necessary between the causal
part and the anticausal part of the filter, it is possible
to carry out only a partial reconfiguration (see
Figure 5).



Figure 7. (a) Block diagram of the prototype board. (b)
ARDOISE prototype board.

Figure 9. Temporal partitioning of image translation.
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This filter is of first order with constant coefficients
(see Eqn. (18) and Figure 5). The images to be processed
have 8-bit resolution (256 gray levels) and are of size
256� 256 pixels. The rotated image is of size 362� 362
pixels. The multipliers limit the processing frequency to
20 MHz.

The nonrecursive part of the filter is loaded into the
FPGA at the end of the execution of the anti-causal IIR
filter (Figure 9). The four coefficients of this filter vary
from one image row to another. Therefore, it is
Figure 8. Parallel implementation of the causal part (idem
for anticausal) of the IIR filter.
necessary to update them for each image row. The
long-term objective is of course to use multipliers with
propagated constants. This will allow us to perform
the dynamic reconfiguration of the FIR filter from
one row to the next by substituting the old multipliers
by more recent optimized and simplified multipliers for
the next coefficients. In this first version, we use
multipliers with variable coefficients. Since it is necessary
to change their values from one row to the next, the
coefficients are loaded into the internal registers at
the end of each image row. To load eight coefficients,
four clock cycles are required at the end of each image
row. The size of the FIR filter has forced us to use a
data parallelism of order 2. Two FIR filters occupy 1011
CLBS.

Discussion of the static implementation. In order to carry
out a comparison on the same basis, the evaluation of
the cost (in CLBS) is done by implementing the image
rotation algorithm in a static manner on the AT40K40-
based board. This application belongs to the general
case, which is studied earlier. The three tasks that
compose it are concurrent (parallelism by functions).
The running frequency of this component is higher than
the application needs. As a result, the component
remains inactive for a fraction of the image acquisition
time. Moreover, we are going to see that the static
implementation requires several AT40K40 FPGAs, and
hence additional resources.

One translation is achieved by two IIR filters and one
FIR filter. It occupies 1600 cells from a total of 2024.
To accomplish an image rotation it is necessary to
perform three translations requiring 3� 1600=4800
cells. This practically takes 3 AT40K40 FPGAs. If the
size of FPGAs was adapted to the image rotation needs,
the static cost would be: CostStat=NSta_CLBt= 4800
CLBs.

However, in reality we choose an FPGA with a priori
knowledge that among the cells constituting it, there will
be some that will not be used. Since we possess only one
card based on AT40K40 FPGA, the experiments have
been done on this unique board for the three transla-
tions. First, the image is translated along the rows, then
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along the columns and finally along the rows again.

CostStat ¼ NStat CLB ¼ 3 � 2024 ¼ 6072CLBs

PerfStat ¼ TStat exec ¼ NTStat iteration þ Tinactivity

¼ ð20 þ 20Þms ¼ 40 ms ¼T ð23Þ

We can note in Eqn (23) the presence of an idle time of
20 ms. The times indicated in this section are obtained
by performing tests on the board ‘‘ARDOISE’’ (see
Figure 7(b)).

Discussion of the dynamic implementation. The dynamic
implementation has been tested at the same rate
(20 MHz) as the static implementation and on the same
component AT40K40. Nine global reconfigurations
are necessary to do the three translations (an image
rotation), that is six reconfigurations for IIR filters and
three reconfigurations for FIR filter. The average time
delay of each global reconfiguration is approximately
0.5 ms. So the total reconfiguration time per image is
Ttotal reconf.time/image= 9� 0.5 ms = 4.5 ms. The proces-
sing time of an image (by the IIR causal filter) is given
by

TIIR causal ¼TDynam iteration �
image size

data parallelism ratio

� 3Translations

¼50 ns�
362 � 362

4
� 3 ¼ 5ms

We obtain the same execution time for the anticausal
part of the IIR filter: TIIR_anticausal= 5ms. The data
parallelism ratio of the FIR filter being equal to two,
TFIR will be twice the TIIR_causal: TFIR= 10 ms.

To accomplish an image rotation, the whole algo-
rithm execution time is 20 ms. The global time of
the app1ication is TIIR_causal+TIIR_anticausal+TFIR+
Ttotal reconf.time/image= 24.5 ms.

The obtained performance is identical to that
obtained for the static case. The dynamic cost is given by

CostDynam ¼ NCLB Dynam

¼ MAX
i¼3

i¼1
NTaski CLB þNControl CLB

� �
¼ 2NCLBFIR ¼ 1011CLBs ð24Þ

PerfDynam ¼ TDynam exec þ Ttotal reconf :time=image þ Tinactivity

¼ ð20 þ 4:5 þ 15:5Þms ¼ 40 ms ¼ T

The exact cost is equal to the size of the used FPGA
(AT40K40) and is 2024CLBs. Task 1 (four IIR causal
filters) and task 2 (four IIR anticausal filters) occupy an
identical number of CLBS that is 800 CLBS. Task 3
(two FIR filters) requires 1011CLBS.

This first approach, which does not exploit the
optimized multipliers, already shows the gain in area
obtained by the dynamic reconfiguration 66.7%.

It is to note that the use of partial reconfiguration to
mask configuration times will make only a maximum
gain in performance of 11% of the image duration (the
global reconfiguration time by image is 4.5 ms). There-
fore, a more significant improvement can be obtained
only by using optimized arithmetic operators.

Comparison Between the Implementation in Static
Configuration and the Implementation in Global
Dynamic Reconfiguration

Although the contribution of the dynamic reconfigura-
tion is certain, this is only to discuss two points that
seem, for us, to be advantages of the static configura-
tion.

K We have presented the image rotation for an image of
a size of 256� 256 pixels. In the dynamic recon-
figuration case, any increase in the processed image
size (by increasing the pixel acquisition frequency)
can require a total recasting of the partitioning and
sequencing of the tasks. It may also be necessary to
increase the resources (perhaps changing the FPGA)
to insure the real-time constraint. In our example,
changing the image to 512� 512 multiplies the
dynamic execution time by four and thereby causes
the violation of the real-time constraint.
The static implementation does not need any changes
when increasing the processed image size, the only
limits in this case will be the external memory
(buffers) sizes.

K The increase of the input pixel frequency is supported
by the static configuration, limited by the maximum
processing frequency, without any modification of
the architecture. In the case of the DR, the input pixel
frequency does not have to exceed the processing
frequency divided by the partitioning rate K (number
of partitions). It will be even lower if we take into
account the reconfiguration time.

If we leave aside these two points, the DR is by far the
one which brings higher flexibility and requires less area
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and therefore avoids crowding (more reliability and less
energy consumption). A dynamically reconfigurable
FPGA is more flexible than a static-configuration-based
FPGA due to the fact that it is possible to realize a
succession of image-processing algorithms on one
dynamically reconfigurable FPGA while it would be
necessary to have, for the same task, several static
configurable FPGAs. Any modification of the number
and the nature of algorithms to perform can be easily
achieved when using a dynamically reconfigurable
FPGA. Large problems are broken down and parti-
tioned temporally into stages, each of which tits onto an
array. As an example, one can read the paper [21] which
describes a solution for automatic target recognition
based on dynamically reconfigurable FPGA.

Conclusion and Prospects

This first real-time image rotation implementation by
using dynamic reconfiguration has allowed us already to
highlight some problems specific to dynamic reconfi-
guration. Through this article we have focused on the
impact of the application nature on the cost and the
performance of the implementation. We have clearly
shown that the implementation of a pipelined applica-
tion (with a spatiotemporal efficiency equal to 100%)
using the DR cannot be justified by the cost criterion
alone. Indeed, for such applications, except for the
crowding problem, the dynamic implementation can be
more expensive than the static implementation. In
general, a gain in number of CLBs of a factor k is
obtained by the use of the DR, but this is at the price of
a processing frequency that increases by the same factor.
An example of a concrete realization is given to illustrate
our theoretical developments. We have implemented
real-time image rotation in static and dynamic manners.
The dynamic implementation shows an improvement in
the used area of 67% compared to the static case.

Currently, we are dealing with the image rotation
implementation by using local reconfiguration. Indeed,
as it is stated at the end of Analysis of the static/dynamic
implementations, a significant improvement in the
execution time (when using DR) can only come by the
use of optimized multipliers.
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