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Abstract

Analysis of colour images in the Red, Green and Blue acquisition space and in the intensity and chrominance spaces
shows that colour components are closely correlated (Carron, Ph.D. Thesis, Univ. Savoie, France, 1995; Ocadis, Ph.D.
Thesis, Univ. Grenoble, France, 1985). These have to be decorrelated so that each component of the colour image can be
studied separately. The Karhunen}Loève transformation provides optimal decorrelation of these colour data. However,
this transformation is related to the colour distribution in the image, i.e. to the statistical properties of the colour image
and is therefore dependent on the image under analysis. In order to enjoy the advantages of direct, independent and rapid
transformation and the advantages of the Karhunen}Loève properties, this paper presents the study of the approxima-
tion of the Karhunen}Loève transformation. The approximation is arrived at through exploitation of the properties of
Toeplitz matrices. The search for eigenvectors of a Toeplitz matrix shows that complex or real orthogonal mappings such
as the discrete Fourier transform and its decompositions approximate the Karhunen}Loève transformation in the case of
"rst-order Markov processes. ( 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In order to study a colour image, it is "rst necessary to de"ne the base in which the colour image is
represented. Several investigations have looked at the representation systems to "nd the base that best
renders the colour [6]. The best-known colour image representation spaces are the RGB system (Red, Green,
Blue) of the Commission Internationale pour l'ED clairage (CIE) and the R

N
G

N
B
N

system of the National
Television Standard Chromacity (NTSC) for colour image acquisition [7]; most colour cameras operate with
these two systems. There are also intensity and chrominance spaces for separating luminance and colour.
But the hue and saturation components de"ning the colour plane are closely related [1]. By using the
Karhunen}Loève development to represent colour images, the di!erent colour components can be treated
separately [3].
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Indeed, the Karhunen}Loève development } or principle data component representation } is a dependable
statistical means of characterising the data set main axes [5]. The main axes will therefore de"ne the colour
image representation axes. However, the Karhunen}Loève transformation cannot be applied just once for
the entire set of images to be processed. The transformation matrix must be re-calculated for each colour
image. Accordingly, to take advantage of the Karhunen}Loève}Loève representation and a "xed trans-
formation, we investigate here the approximation of the Karhunen}Loève space by linear orthogonal
transformations. Several papers show that orthogonal transformations are asymptotically equivalent to the
Karhunen}Loève transformation when there is a large number of principle vectors [2,4,9,10]. In this paper
we show that Karhunen}Loève space can be approximated by linear orthogonal space with a limited number
of three base vectors.

A colour image is stationary or homogeneous if its correlation matrix is similar to that of a "rst-order
Markov process. In this case, the distribution of the information on the three axes of the acquisition space
(RGB) is uniformly spread. Our approach is based on the properties of stationary systems and of Toeplitz
matrices. The objective being to obtain a Karhunen}Loève-type transformation that is independent of the
image to be processed; we develop a method to show that the colour image covariance matrix can be
diagonalised by DFT, DOFT, DREFT, DROFT, DCT and DEST orthogonal transformations [8].

Section 2 of the paper concentrates on the de"nition of the Karhunen}Loève transformation and the
approximation from a colour covariance matrix to a Toeplitz matrix. Section 3 is an analysis of the
properties of Toeplitz matrices to estimate their eigenvalues and eigenvectors. Finally, in Section 4, we apply
the results of the approximation of Karhunen}Loève space to colour images that are representative of
natural scenes.

2. Karhunen}Loève transformation in the case of colour images

2.1. Determining the colour image covariance matrix and the Karhunen}Loève transformation matrix

2.1.1. Calculating the covariance matrix
The covariance matrix of a colour is de"ned by the following expression:
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N is the total number of pixels in the image.
Developing Eq. (3) gives the following covariance matrix for the colour image:
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R, G and B are the Red, Green and Blue components of the colour image, respectively. The order of the
components is irrelevant in calculating the covariance matrix; the order RGB, RBG, GRB, GBR, BGR or
BRG can be de"ned without altering the structure or eigenvalues and eigenvectors of the colour image
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covariance matrix. The image correlation matrix is then obtained directly from its covariance matrix:
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The covariance matrix is symmetrical. If we further assume that it is a Toeplitz matrix (i.e. that coe$cients
c
11

, c
22

and c
33

are equal and that coe$cients c
12

and c
23

are equal) then the colour image correlation
matrix is quite similar to that of a "rst-order Markov process. In this speci"c instance, the image is
homogeneous or stationary. The correlation matrix of a "rst-order Markov process is expressed below [2]:

A
1 u u2

u 1 u

u2 u 1 B, (6)

u is the correlation coe$cient between zero and one.
For what follows, we concentrate on the "rst-order stationary processes.

2.2. Calculating the Karhunen}Loève transformation matrix

The Karhunen}Loève transformation equation is de"ned by

;"A(¹!m
T
). (7)

In this expression, ; is the transformed image vector, ¹ is the original colour image vector in the RGB
colour representation space and A the transformation matrix. It is the matrix of eigenvalues of the colour
image covariance matrix. The Karhunen}Loève transformation is therefore de"ned by the search for the
covariance matrix eigenvalues. These eigenvalues are the basis of the Karhunen}Loève representation.

3. Search for the eigenvectors of a Toeplitz matrix

3.1. Search for the eigenvalues of a Toeplitz matrix

Consider the following Toeplitz matrix:
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The circular decomposition of a matrix is obtained by the sum of the circular matrices. We decompose
matrix C

3
de"ned above from the circular A

3
and pseudo-circular B

3
matrices. For this we consider that

matrix D
3

obtained by inverting the elements of each line of matrix C
3

without altering the elements on the

R. Kouassi et al. / Signal Processing: Image Communication 16 (2001) 541}551 543



diagonal:
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D
3

is also a symmetrical Toeplitz matrix.
The circular A

3
and pseudo-circular B

3
matrices are de"ned as follows:
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Circular decomposition of matrix C
3

is then obtained from the relation
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Matrices A
3

and B
3

are also Toeplitz symmetrical matrices.

3.2. Diagonalising a Toeplitz matrix

To calculate the eigenvalues and eigenvectors for diagonalising matrix C
3
, we seek instead to diagonalise

matrices A
3

and B
3
. We then consider the permutation matrices P

3
and Q

3
de"ned below:
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The circular matrix A
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and the pseudo-circular matrix B
3

can then be expressed as polynomial functions
of permutation matrices P

3
and Q

3
. This gives the following relations:
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By writing matrices A
3

and B
3

in polynomial form we can de"ne their eigenvalues from those of matrices
P
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3
. The eigenvalues are also related by the same polynomial relations, i.e. if we denote as j
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It is obvious that as matrices P
3

and Q
3

are very simple (composed of ones and zeroes), their eigenvalues
and eigenvectors can be calculated easily. This gives the following noteworthy expressions:
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By using formula (14) we determine the eigenvalues of matrices A
3

and B
3
.
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The eigenvectors corresponding to the eigenvalues of matrices P
3

and A
3

are formulated as follows:
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This formula is nothing other than the discrete Fourier transform (DFT). The circular matrix A
3

can
therefore be diagonalised by the discrete Fourier transform matrix.

By developing this expression, the three eigenvectors of matrix A
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can be given as
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Likewise, the eigenvectors of matrices Q
3

and B
3

are calculated, giving

<
m
(k)"

1

J3
expA$

jp(2m!1)(k!1)

3 B, k, m"1, 2, 3. (22)

The expression of the eigenvectors is that of the discrete odd Fourier transform. Thus, the development of
the expression below means the eigenvectors of matrix B

3
can be written out completely:
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The eigenvectors of matrices A
3

and B
3

having been determined, it is possible to calculate those of matrix
C

3
by using the relation linking a matrix to its eigenvalues and eigenvectors. The equations below are

obtained:
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By denoting as (;I ) a combination of vectors ; and <, we obtain the equations given below:
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Vector ;I is therefore an eigenvector of matrix C
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. From the eigenvectors of matrices A
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3.3. Simplifying vector ;I

Vector ;I can be simpli"ed to give real expressions which are also eigenvectors of matrix C
3
. This

simpli"cation is given by the following formulas:
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is the complex conjugate of;I
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is an arbitrary angle. By varying h

i
, we obtain a whole discrete cosine

transformation family (DCT), as for example, the transformation expression below:
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Likewise we obtain the discrete sine transformation expression using the combination below:
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We thus obtain the discrete odd sine transformation expression (DEST):
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4. Application to colour images

The task is to compare the results of the Karhunen}Loève transformation with those of DCT and DEST
transformations from colour images initially encoded under the RGB system. We "rst analyse the homogen-
eity of the images to put ourselves in the ideal conditions of approximation of the Karhunen}Loève space.

4.1. Analysis of colour image stationarity

Take the following two images:

The House image is a colour picture of a natural scene whereas the Baubles picture is computer generated.
The correlation matrices calculated for the two images are

u
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!0.41 !0.25 1.00 B.
House correlation matrix Bauble correlation matrix

By comparing the correlation matrices of the two images, we conclude that the House image, with a mean
correlation coe$cient of 0.91 is more homogeneous than the baubles image with a mean correlation
coe$cient of !0.42.

Consider the correlation matrix of a colour image in the RVB system below:

u
I
"A

1 u
12

u
13

u
12

1 u
23

u
13

u
23

1 B. (34)

The mean error committed by approximating this matrix to a "rst-order Markov process matrix is given by
q expressed below:
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The coe$cient of correlation calculated in the RVB space is linked to the coe$cient of stationary that we
have de"ned. The more u tends to 1, the more q tends to 0 and the image is stationary. If q is high, that means
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that the image is non-correlated in the origin basis. Consequently, the transformation of Karhunen}Loève is
not adapted: the coe$cient of stationary q can then be used to predict the signi"cance of a KL transformation
or its approximation. We can thus determine the errors committed by approximating on the images under
study. On the House image, the error is q

M
"1% whereas that obtained for the Baubles image is q

B
"25.5%.

From these calculations we deduce that the House image displays colours closer to one another than the
Baubles image. Approximation of the Karhunen}Loève space is therefore better on the House image than on
the Baubles image.

4.2. Determining the colour components in Karhunen}Loève (KL), DCT and DEST spaces

4.2.1. Decomposition of the House image
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4.2.2. Decomposition of the Baubles image

4.3. Analysis of results on approximated spaces

To characterise the DCT and DEST spaces obtained from approximation of the Karhunen}Loève space,
we calculate the mean quadratic errors made on each approximated image. The Karhunen}Loève trans-
formation, like the DCT and DEST transformations, provides three image planes representing the colour
image. Each image is associated with a representation axis. The axes forming the Karhunen}Loève space are
KL1, KL2 and KL3. The distribution of colour data is greater on KL1, average on KL2 and very low on
KL3 when the image is homogeneously coloured. Otherwise, the colour information is uniformly distributed
on the three axes. We also deduce axes DCT1 and DEST1 corresponding to KL1, DCT2 and DEST2 for
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Table 1

House DCT DEST

Axis 1 0.047 6.670
Axis 2 0.00 0.00
Axis 3 0.021 6.183

Table 2

Baubles DCT DEST

Axis 1 27.04 25.53
Axis 2 7.50 7.50
Axis 3 4.83 12.17

Table 3
Mean quadratic errors E

q
and homogeneity rate q

Images Plane Pond Woman Lighthouse Mountain Parrots

E
q

(DCT) (%) 0.187 0.09 1.13 0.30 0.037 0.21
q (%) 4.54 0.2 9.5 3.87 0.23 0.54

KL2 and DCT3 DEST3 for KL3. The results of the comparisons expressed as percentages are summarised in
Tables 1 and 2.

Analysis of Tables 1 and 2 shows that the approximation to Karhunen}Loève space by DCT and DEST
spaces is better on the House image than on the Baubles one. These errors con"rm the pervious results for the
two images. As the House image is more stationary than the Baubles one, the approximation errors are
lower.

We can also deduce from these tables that approximation of the Karhunen}Loève transformation by
a DCT is more worth while than approximation by a DEST: the errors are smaller in DCT than DEST for
both images.

We also analyse the approximation with other types of image. This was done to check experimentally the
connection between the coe$cient q and the approximation errors. Table 3 gives, for each image, the
coe$cient of homogeneity q and the mean quadratic errors obtained using a DCT approximation space.

By comparing these errors with coe$cient q, it can be deduced that the coe$cient of homogeneity q is
indeed related to approximation errors: the lower the value of q the lower the approximation error is. The
homogeneity of a colour image can then be characterised by calculating coe$cient q. Experimentally, we
determine a colour image as homogeneous for q)5%. But, for a video application (acquisition of images in
real time), the stationary is preserved: two successive images are nearly similar. Consequently, it is not
necessary to calculate the coe$cient q for each image. Thus, according to the "lm, the coe$cient can be
calculated for every 10}20 images or more to insure that the stationary condition remains in the tolerance
de"ned.

5. Conclusion

By exploiting the properties of circular decomposition of Toeplitz matrices, we obtain interesting
expressions for eigenvalues and eigenvectors of covariance matrices of stationary processes. From these
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eigenvectors, it can be deduced that DCT, DEST, DFT transformation and all those derived from
combinations of them approximate the Karhunen}Loève transformation.

Determining coe$cient q, as a measure of the homogeneity of a colour image, allows us a priori to
characterise the approximation of the Karhunen}Loève space by the DCT or DEST space. For example, we
found experimentally that for q)5% colour images are homogeneous. Thus, in the case where colour
images are homogeneous, representation of these images by the Karhunen}Loève space can be replaced by
a representation in DCT or DEST space. This allows us to have a "xed and rapid transformation for all
images to be analysed.

However, the approximation of Karhunen}Loève space by DCT space is more worth while than by DEST
space. This study opens up signi"cant perspectives for compressing colour images based on Karhunen}
Loève space or approximations thereof.
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