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We propose a method and a tool for automatic generation of hardware implementation of a decision rule based on the Adaboost
algorithm. We review the principles of the classification method and we evaluate its hardware implementation cost in terms of
FPGA’s slice, using different weak classifiers based on the general concept of hyperrectangle. The main novelty of our approach
is that the tool allows the user to find automatically an appropriate tradeoff between classification performances and hardware
implementation cost, and that the generated architecture is optimized for each training process. We present results obtained using
Gaussian distributions and examples from UCI databases. Finally, we present an example of industrial application of real-time
textured image segmentation.
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1. INTRODUCTION

In this paper, we propose a method of automatic genera-
tion of hardware implementation of a particular decision
rule. This paper focuses mainly on high-speed decisions (ap-
proximately 15 to 20 nanoseconds per decision) which can
be useful for high-resolution image segmentation (low-level
decision function) or pattern recognition tasks in very large
image databases. Our work—in grey in the Figure 1—is de-
signed in order to be easily integrated in a system-on-chip,
which can perform the full process: acquisition, feature ex-

traction, and classification, in addition to other custom data
processing.

Many implementations of particular classifiers have been
proposed, mainly based on neural networks [1, 2, 3] or more
recently on support vector machine (SVM) [4]. However,
the implementation of a general classifier is not often opti-
mum in terms of silicon area, because of the general struc-
ture of the selected algorithm, and a manual VHDL de-
scription is often a long and difficult task. During the last
years, some high-level synthesis tools, which consist of trans-
lating a high-level behavioural language description into a
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Figure 1: Principle of a decision function integrated in a system-
on-chip.

register-transfer-level representation (RTL) [5], have been
developed and which allow such a manual description to be
avoided. Compilers are available for example for SystemC,
Streams-C, Handel-C [6, 7], or for translation of DSP bina-
ries [8]. Our approach is slightly different, since in the case
of supervised learning, it is possible to compile the learning
data in order to obtain the optimized architecture, without
the need of a high-level language translation.

The aim of this work is to provide the EDA tool
(Boost2VHDL, developed in C++) which generates auto-
matically the hardware description of a given decision func-
tion, while finding an efficient tradeoff between decision
speed, classification performances, and silicon area which we
will call hardware implementation cost denoted as λ. The de-
velopment flow is depicted in Figure 2. The idea is to generate
automatically the architecture from the learning data and the
results of the learning algorithm.

The first process is the learning step of a supervised clas-
sification method, which produces, off-line, a set of rules
and constant values (built from a set of samples and their
associated classes). The second step is also an off-line pro-
cess. During this step, called Boost2VHDL, we built auto-
matically from the previously processed rules the VHDL files
implementing the decision function. In a third step, we use
a standard implementation tool, producing the bit-stream
file which can be downloaded in the hardware target. A new
learning step will give us a new architecture. During the on-
line process, the classification features and the decision func-
tion are continuously computed from the input data, pro-
ducing the output class (see Figure 1).

This approach allows us to generate an optimized archi-
tecture for a given learning result, but implies the use of a
programmable hardware target in order to keep flexibility.
Moreover, the time constraints for the whole process (around
20 nanoseconds per acquisition/feature extraction/decision)
imply a high use of parallelism. All the classification features
have to be computed simultaneously, and the intrinsic op-
erations of the decision function itself have to be computed
in parallel. This naturally led us using FPGA as a potential
hardware target.

In recent years, FPGAs have become increasingly impor-
tant and have found their way into system design. FPGAs
are used during development, prototyping, and initial pro-
duction and can be replaced by hardwired gate arrays

or application-specific component (ASIC) for high-volume
production. This trend is enforced by rapid technological
progress, which enables the commercial production of ever
more complex devices [9]. The advantage of these compo-
nents compared to ASIC is mainly their on-board reconfig-
urability, and compared to a standard processor, their high
level of potential parallelism [10]. Using reconfigurable ar-
chitecture, it is possible to integrate the constant values in
the design of the decision function (here for example the
constants resulting from the learning step), optimizing the
number of cells used. We consider here the slice (Figure 3) as
the main elementary structure of the FPGA and the unit of λ.
One component can contain a few thousand of these blocks.
While the size of these components is always increasing, it is
still necessary to minimize the number of slices used by each
function in the chip. This reduces the global cost of the sys-
tem, increases the classification performance and the number
of operators to be implemented, or allows the implementa-
tion of other processes on the same chip.

We choose the well known Adaboost algorithm as the im-
plemented classifier. The decision step of this classifier con-
sists in a simple summation of signed numbers [11, 12, 13].
Introduced by Schapire in 1990, Boosting is a general method
of producing a very accurate prediction rule by combining
rough and moderately inaccurate “rules of thumb.” Most re-
cent work has been on the “AdaBoost” boosting algorithm
and its extensions. Adaboost is currently used for numerous
researches and applications, such as the Viola-Jones face de-
tector [14], or in order to solve the image retrieval problem
[15] or the word-sense disambiguation problem [16], or for
prediction in wireless telecommunications industry [17]. It
can be used in order to improve classification performances
of other classifiers such as SVM [18]. The reader will find a
very large bibliography on http://www.boosting.org. Boost-
ing, because of its interesting properties of maximizing mar-
gins between classes, is one of the most currently used and
studied supervised method in the machine learning commu-
nity, with support vector machine and neural networks. It
is a powerful machine learning method that can be applied
directly, without any modification, to generate a classifier
implementable in hardware, and a complexity/performance
tradeoff is natural in the framework: Adaboost learning con-
structs gradually a set of classifiers with increasing complex-
ity and better performance (lower cross-validated error). All
along this study, we kept in mind the necessity of obtaining
high performances in terms of classification. We performed
systematically measurements of classification error e (using a
tenfold cross-validation protocol). Indeed, in order to follow
real-time processing and cost constraints, we had to mini-
mize the error e while minimizing the hardware implementa-
tion cost λ and maximize the decision speed. The maximum
speed has been obtained using a fully parallel implementa-
tion.

In the first part of this paper, we present the principle of
the proposed method, reviewing the Adaboost algorithm. We
describe how it is possible, given the result of a learning step,
to estimate the full parallel hardware implementation cost in
terms of slices.

http://www.boosting.org
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Figure 3: Slice structure.

In the second part, we define a family of weak classifiers
suitable to hardware implementation, based on the general
concept of hyperrectangle. We present the algorithm which
is able to find a hyperrectangle which minimizes the classi-
fication error and allows us to find a good tradeoff between
classification performance and the hardware implementation
cost which we estimated. This method is based on a previous
work: we have shown in [19, 20] that it is possible to im-
plement a hyperrectangle-based classifier in a parallel com-
ponent in order to obtain the required speed. Then, we de-
fine the global hardware implementation cost, taking into ac-
count the structure of the Adaboost method and the struc-
ture of the weak classifiers.

In the third part, results are presented: we applied the
method on Gaussian distributions, which are often used in
literature for performance evaluation of classifiers [21], and
we presented results obtained on real databases coming from
the UCI repository. Finally, we applied the method to an in-
dustrial problem, which consists in the real-time visual in-
spection of CRT cathodes. The aim is to perform a real-time
image segmentation based on pixel classification. This seg-
mentation is an important preprocessing used for detection
of anomalies on the cathode.

The main contributions of this paper are the from-
learning-data-to-architecture tool, and in the Adaboost pro-
cess, the introduction of using hyperrectangles as a possi-

ble optimization of classification performances and hardware
cost.

2. PROPOSED METHOD

2.1. Review of Adaboost

The basic idea introduced by Schapire and Freund [11, 12,
13] is that a combination of single rules or “weak classifiers”
gives a “strong classifier.” Each sample is defined by a feature
vector x = (x1, x2, . . . , xD)T in a D-dimensional space and its
corresponding class: C(x) = y ∈ {−1, +1} in the binary case.

We define the weighted learning set S of p samples as

S = {(x1, y1,w1
)
,
(

x2, y2,w2
)
, . . . ,

(
xp, yp,wp

)}
, (1)

where wi is the weight of the ith sample.
Each iteration of the process consists in finding the best

possible weak classifier, that is, the classifier for which the
error is minimum. If the weak classifier is a single threshold,
all the thresholds are tested.

After each iteration, the weights of the misclassified sam-
ples are increased, and the weights of the well-classified sam-
ple are decreased.

The final class y is given by

y(x) = sgn

( T∑
t=1

αtht(x)

)
, (2)

where both αt and ht are to be learned by the boosting pro-
cedure presented in Algorithm 1. The characteristics of the
classifier we have to encode in the architecture are the coeffi-
cients αt for t = 1, . . . ,T , and the intrinsic constants of each
weak classifier ht.

2.2. Parallel implementation of the global structure

The final decision function to be implemented (equation (2))
is a particular sum of products, where each product is made
of a constant (αt) and the value −1 or +1 depending of the
output of ht. It is then possible to avoid computation of mul-
tiplications, which is an important gain in terms of hardware
cost compared to other classifiers such as SVM or standard
neural networks. The parallel structure of a possible hard-
ware implementation is depicted in Figure 4.
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(1) Input S = {(x1, y1,w1), (x2, y2,w2), . . . , (xp, yp,wp)},
number of iteration T .

(2) Initialise w(0)
i = 1/p for all i = 1, . . . , p.

(3) Do for t = 1, . . . ,T
(3.1) Train classifier with respect to the weighted

samples set and obtain hypothesis

ht : x −→ {−1, +1}.

(3.2) Calculate the weighted error εt of ht :

εt =
∑p

i=1 w
(t)
i I
(
yi �= ht

(
xi

))
.

(3.3) Compute the coefficient αt :

αt = 1
2 log

(
1− εt
εt

)
.

(3.4) Update the weights

w(t+1)
i = w

(t)
i
Zt

exp
{− αt yiht

(
xi

)}
,

where Zt is a normalization constant:

Zt = 2
√
εt(1− εt).

(4) Stop if εt = 0 or εt ≥ 1/2 and set T = t − 1.
(5) Output: y(x) = sgn(

∑T
t=1 αtht(x)).

Algorithm 1: The boosting procedure.

In terms of slices, the hardware cost can be expressed as
follows:

λ = (T − 1)λadd + λT , (3)

where λadd is the cost of an adder (which will be considered
as a constant here), and λT is the cost of the parallel imple-
mentation of the set of the weak classifiers:

λT =
T∑
t=1

λt , (4)

where λt is the cost of the weak classifier ht associated to the
multiplexers. One can note that due to the binary nature of
the output of ht, it is possible to encode the results of addi-
tions and subtractions in the 16-bit LUT of FPGA, using the
output of the weak classifiers as addresses (Figure 5). This is
the first way to obtain an architecture optimized for a given
learning result. The second way will be the implementation
of the weak classifiers.

Since the classifier ht is used T times, it is critical to opti-
mize its implementation in order to minimize the hardware
cost. As a simple classifier, single parallel-axis threshold is of-
ten used in the literature about Boosting. However, this type
of classifier requires a large number of iterations T and hence
the hardware cost increases (as it depends on the number of
additions to be performed in parallel). To increase the com-
plexity of the weak classifier allows faster convergence, and
then minimizes the number of additions, but this will also
increase the second member of the equation. We have then
to find a tradeoff between the complexity of ht and the hard-
ware cost.

x h0
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MUX
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ht

+αt
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Figure 4: Parallel implementation of Adaboost.
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3. WEAK CLASSIFIER DEFINITION AND
IMPLEMENTATION OF THE WHOLE
DECISION FUNCTION

3.1. Choice of the weak classifier: definitions

It has been proved in the literature that decision trees based
on hyperrectangles (or union of boxes) instead of a sin-
gle threshold give better results [22]. Moreover, the decision
function associated with a hyperrectangle can be easily im-
plemented in parallel (Figure 6).

However, there is no algorithm on the complexity of D
which allows us to find the best hyperrectangle, that is, min-
imising the learning error. Therefore, we will use a subopti-
mum algorithm to find it.

We defined the generalized hyperrectangle as a set H of
2D thresholds and a class yH , with yH ∈ {−1, +1}:

H = {θl1, θu1 , θl2, θu2 , . . . , θlD, θuD, yH
}

, (5)

where θlk and θuk are, respectively, the lower and upper lim-
its of a given interval in the kth dimension. The decision
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function is

hH(x) = yH ⇐⇒
D∏

d=1

((
xd > θld

)
and

(
xd < θud

))
,

hH(x) = −yH otherwise.

(6)

This expression, where product is the logical operator,
can be simplified if some of these limits are rejected to the in-
finite (or 0 and 255 in case of a byte-based implementation).
Comparisons are not necessary in this case since the result
will be always true. It is particularly important for minimiz-
ing the final number of used slices. Two particular cases of
hyperrectangles have to be considered.

(i) The single threshold:

Γ = {θd, yΓ
}

, (7)

where θd is a single threshold, d ∈ {1, . . . ,D}, and the deci-
sion function is

hΓ(x) = yΓ ⇐⇒ xd < θd,

hΓ(x) = −yΓ otherwise.
(8)

(ii) The single interval:

∆ = {θld, θud , y∆
}

, (9)

where the decision function is

h∆(x) = y∆ ⇐⇒
(
xd > θld

)
and

(
xd < θud

)
,

h∆(x) = −y∆ otherwise.
(10)

In these two particular cases, it is easy to find the optimum
hyperrectangle, because each feature is considered indepen-
dently from the others. The optimum is obtained by comput-
ing the weighted error for each possible hyperrectangle and
choosing the one for which the error is minimum.

In the general case, one has to follow a particular heuris-
tic given a suboptimum hyperrectangle. A family of such
classifiers have been defined, based on the NGE algorithm
described by Salzberg [23] whose performance was com-
pared to the KNN method of Wettschereck and Dietterich
[24]. This method divides the attribute space into a set of
hyperrectangles based on samples. The performance of our

x2

x1
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x4x6

x0

x8

θu41

x2

x7

x3

x1

Figure 7: Determination of the first limit of H(x4). In this case,
i = 4, z = 7, k̃ = 1, θu41 = R(x71 − x41).

own implementation was studied in [25]. We will review
the principle of the hyperrectangle determination in the next
section.

3.2. Review of the hyperrectangle-based method

The core of the strategy is the hyperrectangles set SH deter-
mination from a set of samples S.

The basic idea is to build around each sample {xi, yi} ∈ S
a box or hyperrectangle H(xi) containing no sample of op-
posite classes (see Figures 7 and 8):

H
(

xi) =
{
θli1, θui1, θli2, θui2, . . . , θliD, θuiD, yi

}
. (11)

The initial value is set to 0 for all lower bounds and 255 for
all upper bounds.

In order to measure the distance between two samples in
the feature space, we use the “max” distance defined by

d∞
(

xi, x j
) = max

k=1,...,D

∣∣xik − xjk
∣∣. (12)

The use of this distance instead of the Euclidean dis-
tance allows building easily hyperrectangle instead of hyper-
sphere. For all axes of the feature space, we determine the
sample {xz, yz}, yz �= yi, as the nearest neighbour of xi be-
longing to a different class:

z = arg min
j

(
d∞
(

xi, x j
))
. (13)

The threshold defining one bound of the box is perpendicu-
lar to the axis k̃ for which the distance is maximum:

k̃ = arg max
k

(∣∣xik − xzk
∣∣). (14)

If xik̃ > xzk̃, we compute the lower limit θl
ik̃
= R(xik̃ − xzk̃). In

the other case, we compute the upper limit θu
ik̃
= R(xzk̃ − xik̃).

The parameter R should be less than or equal to 0.5. This
constraint ensures that the hyperrectangle cannot contain
any sample of opposite classes.

The procedure is repeated until finding all the bounds of
H(xi).
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(3.1.1) Initialize εmin = 1.0
(3.1.2) Do for each class y = −1, 1

Do for i = 0, . . . , q′(y)
Do for j = i + 1, . . . , q′(y)

Build Htemp = Hi ∪Hj

Compute εH the weighed
error based on Htemp

if εH < εmin then Hopt =
Htemp and εH = εmin

end j
end i

end y
(3.1.3) Output: hH = Hopt

Algorithm 2

During the second step, hyperrectangles of a given class
are merged together in order to eliminate redundancy (hy-
perrectangles which are inside of other hyperrectangles of the
same class). We obtain a set SH of hyperrectangles:

SH =
{
H1,H2, . . . ,Hq

}
. (15)

We evaluated the performance of this algorithm in various
cases, using theoretical distributions as well as real sampling
[19]. We compared the performance with neural networks,
the KNN method, and a Parzen’s kernel-based method [26].
It clearly appears that the algorithm performs poorly when
the interclass distances are too small: an important number
of hyperrectangles are created in the overlap area, slowing
down the decision or increasing the implementation cost.
However, it is possible to use the hyperrectangle generated
as a step of the Adaboost process, selecting the best one in
terms of classification error.

3.3. Boosting general hyperrectangle and
combination of weak classifiers

From SH we have to build one hyperrectangle Hopt minimiz-
ing the weighted error. To obtain this result, we merge hy-
perrectangles following a one-to-one strategy, thus building
q′ = q(q − 1) new hyperrectangles. We keep the hyperrect-
angle which gives the smallest weighted error.

For each iteration of the (3.1) Adaboost step, we design
Algorithm 2.

(3) Do for t = 1, . . . ,T
(3.1) Train classifier with respect to the weighted

samples set {S,d(t)} and obtain the three
hypothesis hΓ, h∆, and hH

(3.2) Calculate weighted errors εΓ, ε∆, and εH
introduced by each classifier

(3.3) Choose ht from {hΓ,h∆,hH} for which εt =
min(εΓ, ε∆, εH)

(3.4) Estimate λ

Algorithm 3

In order to optimize the final result, it is possible to com-
bine the previous approaches, finding for each iteration the
best weak classifier between the single threshold hΓ, the in-
terval h∆, and the general hyperrectangle hH . Step (3) of the
Adaboost algorithm is illustrated in Algorithm 3. As we will
see in the results presented in Section 4, this strategy allows
minimizing the number of iterations, and thus minimizing
the final hardware cost in most of the case, even if the hard-
ware cost of the implementation of an hyperrectangle is lo-
cally more important than the cost of the implementation of
a single threshold.

3.4. Estimation of the hyperrectangle hardware
implementation cost

As the elementary structure of the hyperrectangle is based on
numerous comparisons performed in parallel (Figure 6), it is
necessary to optimize the implementation of the comparator.

It is possible to estimate the hardware implementation
cost of ht taking into account that we can code the constant
values of the decision function into the final architecture, us-
ing the advantage of FPGA-based reconfigurable computing.
Indeed, the binary result LB of the comparison of the variable
byte A and the constant byte B is a function FB of the bits of
A:

LB = FB
(
A7,A6, . . . ,A0

)
. (16)

We consider for example B = 151, 10010111 in binary, then,
where “∗” is the logic operator AND, “+” is the logic opera-
tor OR:

L151 = A7
∗(A6 +

(
A5 +

(
A4

∗A3
)))

, (17)

L151 is true if A is greater than 151, and false otherwise.
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More generally, we can write LB as follows (for any byte
B such that 0 < B < 255):

LB = A7@
(
A6@

(
A5@

(
A4@

(
A3@

(
A2@

(
A1@

(
A0@0

)))))))
.

(18)

The @ operator denotes either the AND operator or the OR
operator, depending on the position of @ and the value of
B. In the worst case, the particular structure of LB can be
stored in two cascaded lookup tables (LUT) of 16 bits each
(one slice).

We have coded in the tool Boost2VHDL a function which
automatically generates a set of VHDL files: this is the hard-
ware description of the decision functions ht given the re-
sult of a training step (i.e., given the hyperrectangles limits).
The files generated are used in the parallel architecture de-
picted in the Figure 5, which is also automatically generated
using the constants of the Boosting process. We then have
used a standard synthesizer tool for the final implementation
in FPGA.

In the case of single threshold, λt = 1, for all t ∈ [1,T]. In
the case of interval, λt ≤ 2. In the case of general hyperrectan-
gle, the decision rule requires in the worst case 2 comparators
per hyperrectangle and per feature: λt ≤ 2D.

3.5. Estimation of the global Adaboost
implementation

Considering that some limits of the general hyperrectangle
can be rejected to the “infinite,” the general cost of the whole
Adaboost-based decision can be expressed as follows:

λ ≤ (T − 1)λadd + µT , with µ ≤ 2D, (19)

where µ is the sum of the number of lower limits of hyper-
rectangles which are greater than 0, and the number of upper
limits which are lower than 255.

The implementation is efficient in terms of real-time
computational for a reasonable value of D. In order to obtain
very fast classification (around 10 nanoseconds per decision),
we considered here only the full parallel implementation of
all the process, including the classification features extraction
(D features have to be computed in parallel). We limited our
investigation here to D = 64.

One can note also that the hardware cost here is di-
rectly linked to the discrimination power of the classification
features. In the classification framework, it is a well-known
problem that is it critical to find efficient classification fea-
tures in order to minimize classification error. Here, the bet-
ter the classification features are selected, the faster the Boost-
ing converges (T will be low), and the lower will be the hard-
ware cost.

Moreover, an originality of this work is to allow the user
to choose himself to control the Boosting process modifying
the stopping criterion in step (4), and introducing a maxi-
mum hardware cost λmax. The step becomes

(4) Stop if εt = 0 or εt ≥ 1/2 or λ ≥ λmax and set T = t−1.

Finally, the user can choose the best tradeoff between
classification error and hardware implementation cost for its
application. Moreover, compared to a standard VHDL de-
scription of a classifier, our generated architecture is opti-
mized for the user’s application, since a specific VHDL de-
scription is generated for each process of training.

4. RESULTS

We applied our method in different cases. This first one is
based on Gaussian distributions and in a two-dimensional
space. We used this example in order to illustrate the method
and the improvement given by hyperrectangle in terms of
performance of classification.

The second series of examples, based on real databases
coming from the UCI repository, is more significant in terms
of hardware implementation, since they are performed in
higher-dimensional spaces (until D = 64, this can be seen
as a reasonable limit for a full parallel implementation).

The last example is from an industrial problem of qual-
ity control by artificial vision, where anomalies are to be de-
tected in real time on metallic parts. The problem we focus
on here is the segmentation step, which can be performed
using pixelwise classification.

For each example, we also provide the result of a deci-
sion based on SVM developed by Vladimir Vapnik in 1979,
which is known as one of the best classifiers, and which can
be compared with Adaboost on the theoretical point of view.
At the same time, SVM can achieve good performance when
applied to real problems [27, 28, 29, 30]. In order to compare
the implementation cost of the two methods, we evaluated
the hardware implementation cost of SVM as

λSVM � 72(3D − 1)Ns + 8, (20)

where Ns is the total number of “support vectors” deter-
mined during the training step. We used here an RBF-based
kernel, using distance L1. While the decision function seems
to be similar to the Adaboost one, the cost is here mainly
higher because of multiplications; even if the exponential
function can be stored in a particular lookup table to avoid
computation, the kernel product K requires some multipli-
cations and additions; the final decision function requires at
least one multiplication and one addition per support vector:

C(x) = sgn

(Ns∑
i=1

yiαi · K
(

si, x
)

+ b

)
. (21)

4.1. Experimental validation using
Gaussian distributions

We illustrated the boosted hyperrectangle method using
Gaussian distributions. The first tested configuration con-
tains 4 classes in a two-dimensional feature space. An exam-
ple of boundaries obtained using Adaboost and SVM is de-
picted in Figure 9. The second example is based on a classical
XOR distribution, which is solved here using hyperrectan-
gles.
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(a) (b)

(c) (d)

(e)

.3

(f)

Figure 9: Example in D = 2, with 4 classes. (a) Original 4-class distribution, and boundaries with (b) single threshold, (c) single interval,
(d) general hyperrectangle, (e) combination, and (f) SVM (RBF).

Results in terms of classification error are given in
Table 1. As expected, the method works well in all the cases
but the XOR one using single threshold or interval. We re-
ported also the estimated number of slices, but in this par-
ticular case of a two-dimensional problem, it is clear that it
is also possible to store the whole result of the SVM classifier
in a single RAM, for example. However, this test well illus-
trates how it is possible to approximate complex classifica-
tion boundaries with a single set of hyperrectangles.

4.2. Experimental validation using real databases

In order to validate our approach, we evaluate the hard-
ware implementation cost of classification of databases from

the UCI database repository. Results are summarized in the
Table 2. We give the classification error e (%), the estimated
number of slices (λ), a comparison with the decision time
computation Pc, obtained with a standard PC (2.5 GHz) in
the case of combination of best weak classifiers, and the
speedup Su = Pc /0.01 of hardware computation, obtained
with a 50 MHz clock.

The dimension of the tested distributions is from 13 to
64, which seems to be a reasonable limit for byte-based full
parallel implementation. The number of classes (C) is from
2 to 10. For each case, we give the result of classification us-
ing an RBF kernel-based SVM as a reference. One can see
that the hardware cost of this classifier is not realistic here.
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Table 1: Error using Gaussian distributions.

Distribution D Classes Optimum SVM (RBF) Threshold Interval Hyperrectangle Combination

e (%) e (%) λSVM e (%) λ e (%) λ e (%) λ e (%) λ

4 Gaussians 2 4 13 13.02 59048 14.8 181 13.62 386 13.22 46 13.2 32
Xor 2 2 4.4 4.6 129248 47.65 41 49 49 5.25 11 5.25 8

Table 2: Results on real databases.

Distribution D C SVM (RBF) Threshold Interval Hyperrectangle Combination

e (%) λSVM e (%) λ e (%) λ e (%) λ e (%) λ Pc (µs) Su

optdigit 64 10 1.15 20 215 448 2.605 5 292 2.735 5 414 2.59 4 392 2.255 4 379 873 43 650

pendigit 16 10 0.625 2 270 672 20.875 3 435 2.01 5 481 1.415 3 405 1.195 2 932 78 3 900

Ionosphere 34 2 7.95 465 416 8.23 126 6.81 149 7.095 119 5.68 88 1.13 56

IMAGE 17 7 3.02 1 699 208 12.91 568 7.655 697 4.015 973 5.085 778 4.0 200

WINE 13 3 4.44 87 560 3.33 98 5.525 98 6.11 18 3.325 36 1.5 75

x1

x0

(a)

x3

x2

(b)

Figure 10: Extracted features for segmentation. (a) x0 and x1 projections. (b) x2 and x3 projections.

Considering the different results of our Adaboost implemen-
tation, it appears clearly that the combination of the three
types of weak classifiers gives the better results. The opt-
digit and the pendigit cases can be solved using half of a cir-
cuit XCV600 of the VirtexE family, for example, while all the
other cases can be implemented in a single low-cost chip.

Moreover, the classification error of the Adaboost-based
classifier is very close to the SVM one.

Due to the parallel structure of our hardware implemen-
tation, the speedup is really important when the numbers of
features D and classes C are high. Even if we reduce for ex-
ample the frequency to 1 MHz in the case “optdigit” in order
to follow a slower feature extraction, the speedup is still more
than 800 compared to a standard software implementation.

Our system can also be used as a coprocessor embedded
in a PCI-based board, limited to 33 MHz (32 bit data, allow-
ing the parallel transmission of only 4 features from another
board dedicated to data acquisition and features computa-
tion). The speedup in the case of image segmentation could
be here for example:

Su = Pc/0.03
D/4

= 4/0.03
17/4

� 31. (22)

However, the main interest of our method is to be integrated
in a single component together with the other processes, as
depicted in Figure 1.

4.3. Example of industrial application:
image segmentation

We applied the previous method in order to perform an im-
age segmentation step of a quality control process. The aim
here is to detect some anomalies on manufactured parts, fol-
lowing the rate of 10 pieces per second. The resolution of the
processed area is 300 × 300 pixels. The whole control (ac-
quisition, feature extraction, segmentation, analysis, and fi-
nal classification of the part) has to be achieved in less than
100 milliseconds. Thus, feature extraction and pixelwise clas-
sification have to be achieved in less than 1 microsecond.

In this application, “Good” texture and three types of
anomalies of cathodes should be detected: bump (“Bump”),
smooth surface (“Smooth”), and missing material (“Miss-
ing”). As detailed by Geveaux et al. in [26], the local mean of
pixel luminance, the local mean of the Roberts gradient, and
the local contrast, computed in a [12 × 12] neighborhood,
have been selected to bring out the three types of anomalies.
An example of projections of these features is presented on
Figure 10.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 11: Example of segmentation results using threshold and hyperrectangles. (Left column) Original image with (a) denoting defect-free
cathode, (d) missing material, (g) smooth area, and (j) bump. (Middle column) Image segmented using a single threshold. (Right column)
Image segmented using hyperrectangles.

We depicted some examples of segmentation results in
Figure 11. It is clear that the anomalies are better segmented
using hyperrectangles than other weak classifiers. These re-
sults are confirmed by the cross-validated error presented in
the Table 3. In this case, the better tradeoff between classi-
fication performance and hardware implementation cost is
obtained using the combination of different weak classifiers.

The estimated number of needed slices is less than 700 for a
classification error e = 2.44%, which is very close to the error
obtained using SVM, and this for a very lower hardware cost
than the SVM one.

One can see that the decision time of the standard PC
implementation does not follow the real-time constraints
(moreover, the features extraction time is not taken into
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Table 3: Results on industrial application.

Distribution D Classes SVM (RBF) Threshold Interval Hyperrectangle Combination

e (%) λ e (%) λ e (%) λ e (%) λ e (%) λ Pc (µs) Su
Cathode 4 4 1.44 234440 8.16 434 6.15 467 2.41 726.5 2.44 677 2.7 135

account). The speedup of the hardware implementation—
more than 100 for a 50 MHz clock—allows to follow these
real-time constraints.

5. CONCLUSION

We have developed a method and EDA tool, called
Boost2VHDL, allowing automatic generation of hardware
implantation of a particular decision rule based on the Ad-
aboost algorithm, which can be applied in many pattern
recognition tasks, such as pixelwise image segmentation,
character recognition, and so forth. Compared to a standard
VHDL-based description of a classifier, the main novelty of
our approach is that the tool allows the user to find auto-
matically an appropriate tradeoff between classification per-
formances and hardware implementation cost. Moreover, the
generated architecture is optimized for the user’s application,
since a specific VHDL description is generated for each pro-
cess of training.

We experimentally validated the method on theoretical
distributions as well as real cases, coming from standard
datasets and from an industrial application. The final error
of this implemented classifier is close to the error obtained
using an SVM-based classifier, which is often used in the lit-
erature as a good reference. Moreover, the method is really
easy to use, since the only parameter to find is the choice of
the weak classifier, the R value of the hyperrectangle-based
method, or the maximum hardware cost allowed for the ap-
plication. We are currently finalizing the development tool
which will allow the development of the whole implementa-
tion process, from the learning set definition to FPGA-based
implementation using automatic VHDL generation, and we
will use it in the near future in order to speed up some pro-
cesses using a coprocessing PCMCIA board based on a Vir-
tex2 from Xilinx. Our future work will be the integration of
this method as a standard IP generation tool for classifica-
tion.
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