
Introduction

A part of low level image processing consists of the
detection (by filtering) of sharp level variations of lumi-
nance in the image to obtain the edge segments,
extremities and angles. To select the geometrical informa-
tion related to the structure of the objects present in an
image, a key step consists of extracting the edges of the
considered objects. Several accurate numerical algorithms
have been proposed in this field: Roberts [1], Prewitt [2],
Canny [3], and Deriche [4] have already been imple-
mented in software or with dedicated hardwares for
several applications [1,5,6].

One of the main differences between these algorithms is
the calculation complexity of differential operators between

neighbor pixels: from 2 3 2 to more than 9 3 9 per kernel.
The choice of  an edge detection algorithm depends mainly
on the signal to noise ratio (robustness), the localization,
and the quality of detection and the implementation effi-
ciency. One problem is the necessary CPU time required to
perform the edge extraction.

We present here a very high speed edge detector chip
using the optimized CannyDeriche IIR filter in a single
chip.

This paper is organized as follows. The following section
is devoted to the edge model and the optimized Canny-
Deriche filter. Then different digital filter integration
examples are shown and different techniques are defined
to accelerate calculations in filtering. The calculation is
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detailed by using a look-ahead with decomposition tech-
nique well adapted to the acceleration of recursive filters,
and this technique is applied to the optimized Canny-
Deriche filter [7].

In the penultimate section the integration part of the filter
obtained by look-ahead calculation in an ASIC is shown,
and in the last section the direct implementation of the filter
without look-ahead technique is shown, but with a local
retiming of internal registers contained in the recursive part
of the filter.

The Filter

The edge model presented here is the best approximation
for a wide variety of edges seen in real-time image process-
ing [7]. Even if the edge at the input of a camera is a step, it
is transformed at the output in an edge which we assume to
follow this model (exponential edge model):

with s > 0

Figure 1. Exponential edge model with s = 0.5.

Chosen criteria for this algorithm are the following:

(i) signal/noise ratio: where the noise is considered white,
additional, gaussian and centered in zero.

(ii) localization: the average gap between edge detected
with noise position and its real position.

(iii) quality of the detection (spurious response): with
noise, the signal detected can present several maxima,
and thus parasitic responses must be as far as possible
from the real response.

These three criteria are maximized using a mathematical
approach.

The optimal blurred edge detector impulse response is
thus given by (optimal edge detector impulse response) [7]:

This leads to a recursive realization with two stable third
recursive filters moving in opposite directions. It can be
extended to the 2D case by knowing that the slope of a sur-
face in any direction can be determined exactly from its
slope in two directions:

with:

We have shown [7] that for a good choice of the parame-
ters m and w, and in the case of blurred and noisy images,
our operator allows a notable increase of the signal to noise
ratio in comparison with the Deriche filter (for example
with a signal/noise ratio equal to 2, we increase the perfor-
mance by 20%).

The recursive filter implementation allows us to avoid
the truncation of the filter impulse response, and the use of
this filter in the case of multiscale application is easier
because the number of operations per pixel is independent
of the scale parameters.

Filter’s Implementations

We describe, in the following sections, the filter’s imple-
mentations in an ASIC.
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Direct implementation of the optimized Canny–Deriche filter

A solution to achieve real-time image processing consists of
integrating the filter in a specific dedicated processor (ASIC).

The Z transform of the recursive filter given by equations
(2) are the following:

The corresponding architecture is given in Figure 2.

The integration of such an architecture creates some
problems. Observe that the critical path is composed by one
multiplier and four adders and constitutes a complex com-
binational chain. Morever, the number of glitches increases
when signals through each adder.

The integration of this filter with the help of the CAD tool
OPUS (Cadence Design Framework II) in a CMOS 1 mm
technology has shown its limitations. The frequency of pro-
cessing is in the order of 25 Mhz (for a silicon area 5 mm2).
If our main goal is the integration of an edge detector oper-
ator in real time for images larger than 512 3 512 pixels,
this architecture will not work correctly.

For fast real-time throughput applications, the various
methods that allow accelerated calculations become more
impotant.

Figure 2. TZ+ direct implementation.
(–) Critical path. □D  Register;
jX  Multiplier; j+ adder.

Filter implementation with calculus acceleration

Digital filtering occupies an important place in the field of
the digital signal and image processing. To improve the
performances of these filters for real-time applications. the
traditional approach consists of increasing the hardware

component speed or to program a dedicated processor such
as DSP (Digital Signal Processor). The parallel system
implementation in dedicated circuits (ASIC), allows higher
frequencies to be reached. However, the class of applica-
tions of such circuits remains limited.

In the following subsection a solution is given that accel-
erates the calculations of the filter f(x).

Sampling period definition

A digital filter is characterized by its minimal sampling
period imposed by its implementation (Figure 3):

Figure 3. Pipelined IIR filter.

The sampling period of an IIR filter is limited by its recur-
sive part. It is given by:

The loop l element of Sl that verifies this equation is
called the critical loop. Sl = the feedback loop in the graph
(in this graph, there is a single feedback loop); Dl = time of
calculation associated with each loop (here Ta + Tm, where
Ta is the time of an addition operation, and Tm is the time of
a multiplication operation); Ml represents the total number
of delays (latches) in the loop l (here l = 1 and Ml = 8); L
represents the ratio between the frequency input samples
and the internal registers to the graph. Here, L = 1.

The iteration period of the graph above-mentioned is:

Scattered look-ahead with power-of-two-decomposition
technique

Given the recursive part of an Nth order filter with k
pipeline stages in its feedback loop,
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The original transfer function corresponds to k = 1,  where
qi(1) = ai. The equivalent filter with 2k pipeline stages can
be obtained by multiplying the numerator and the denomi-
nator by:

The pipelined filter is described by:

where the sequence qi(2k) is derived in terms of the
sequences qi(k) (depending on the Nth order filter being
even or odd) by relationships given in annex.

The application of this transformation a second time
gives a pipelined filter four times, (then eight times, and so
on). From the original function, it is necessary to apply
log2 (M) transformations to have M pipeline levels. Each
transformation increases the speed by a factor of 2 and
brings N supplementary multipliers to the filter structure.

In general, the transfer function of an M level pipeline is
given by:

This transfer function can be implemented with (2N +
Nlog2(M) + 1) multiplications.

Application to the f(x) filter

The described acceleration method mentioned above is
valid for any order of the filter used whose Z-transform
is:

with X(z) = TZ(x).

The transfer function of this filter TZ+ (TZ2) is trans-
formed by four pipeline levels (limited by the capacity of
integration in an ASIC design). The filter resulting from the
transformation is a 12th order filter whose transfer function
H (z) is given by Eqn 11.

This transfer function can be seen as a product of a four
transfer functions. These transfer functions are imple-
mented in a cascade form, as described in Figure 4.
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Figure 4. H(z) cascade implementation.
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Global register retiming

Supplementary registers obtained from the look-ahead cal-
culation have an interest only if they are suitably
exploited. Retiming [8,9], is a technique which allows
delays to be moved in a data flow graph and exploited bet-
ter. By using this principle, registers of the H(z) filter
feedback-loop are retimed as shown in Figure 7(a). In
Figure 7(b), e(n) is the output of the non-recursive part of
the look ahead filter.

The registers are moved inside each multiplier to obtain
a pipeline level. This operation also allows a pipeline struc-
ture for adders between them. The non-recursive part can
use these multipliers without introducing modification to
the transfer function, but will introduce a timing latency of
the output y(n).

Figure 7(a). H(z) feedback loop.

After showing the different techniques to accelerate
recursive filters, the look-ahead acceleration is a method
well adapted in view of filter integration in an ASIC imple-
mentation.

Figure 7(b). Retiming registers in the H(z) feedback loop.

Data coding

The use of fixed arithmetic takes into account the coeffi-
cient and internal data coding. To limit the bit coding an
empirical approach is chosen. In [10], we show that the bit
coding is highly dependent on the ‘s’ parameter. In this
way, for s > 1, a 12 bit coding for coefficients and internal
data is a good tradeoff between filter performances (signal
to noise ratio and localization) and silicon area. For s < 1,
16 bit coding is necessary.

In Figures 10, 11 and 12 we show the results obtained for
this image (it is a circle drowned in a Gaussian noise with a
signal to noise ratio of 17 dB), for s = 2 and with a 12 bit
data coding and with real calculus (on 64 bits).
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The corresponding graph filter is the following:

D D D D D

X

+

X

+

X

+

X

+

X

x(n)

a1 a2 a3 a4 a5

k(n)

Figure 5. H1(z) and H2(z) cascade implementation.
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Figure 8. Test image with noise.

Figure 9. Edge detected with s = 2 and 12 bits data coding.

ASIC Implementation of the Look-ahead Filter

In this section the architecture and the realization of dedi-
cated circuit (ASIC) for a ramp edge detection is presented.
The look-ahead calculations are obtained with the method
developed in the previous section. The design is made such
that four identical circuits are used to obtain the horizontal
and the vertical gradient. We describe from an initial bloc
diagram  how we have been able to reduce the internal
memory and to synchronize processings of left to right and
right to left for lines, top to bottom and bottom to top for
columns.

X+ are the results obtained by the filtering in sweeping
lines from left to right, X2 in sweeping them right to left.

Y+ are the resuIts obtained from the filtering in sweeping
columns top to bottom, Y2 in sweeping columns bottom to
top These results are calculated in parallel with the help of
four identical circuits. They process the same image in par-
allel and synchronous manner. The edge extraction operator
is given in Figure 11.

The general idea (simplified) of the working of such a
circuit is:

(i) loading coefficients.
(ii) loading an image line (column) into a 512 3 8 bits of

RAM.
(iii) processing the line (column) following X+ and X2

(there Y+ and Y2). The filter is managed by a special
control unit.

(iv) results of the processing of each filter are loaded in an
output RAM (512 3 12 bits).

(v) X+[i] and X2[i] addition (there Y+[i] and Y2[i]) is
done in a very rapid manner compared to the itera-
tion frequency of the filter. This process is started as
soon as the two necessary terms for the addition are
available.

One RAM architecture

The objective is realized as a single circuit, with the two
choice modes of running as X+ or X2.

In order to develop an architecture based on muxes
(Figure 11) four identical circuits are necessary to obtain
the vertical and horizontal gradient.
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Figure 10. Edge detected with s = 2 and with real calculus.



If “c” is equal to zero, the filter realizes the X+ mode the
input video (8 bits). Data is filtered, then loaded by the
LIFO.

If “c”  is equal to one the input video is then directed to
the LIFO, then filtered so as to obtain the processing fol-
lowing X2.

ASIC bIocks

This subsection is dedicated to the functions of each of the
ASIC blocks.

Figure 12 shows the main functional blocks that form the
heart of the circuit as well as the different signals of
input/output and command signals.

The different blocks are: the filter, the control unit, coef-
ficients registers, the input muxes (MUX1 and MUX2) and
output (MUX3), the LIFO memory, and the address
counter.

All the filter coefficients are on 12 bits and are repre-
sented in two’s complement notation. Coefficients are
loaded from the video data bus.

As the bus of data is on a byte, to load 12 bits two clock
cycles are necessary (loading the first 8 bits in parallel man-
ner, and on the clock edge following loading the last four
bits). The pipelined filter (Eqn 11) has 11 coefficients, and
thus programming requires 22 clock cycles. The control
unit manages the coefficients.

We have seen (Eqn 11) that the filter implementation is a
12th order recursive filter. Its equation contains 11 coeffi-
cients. Each coefficient ends at one of the two inputs of the
associate multiplier. The filter has 11 multipliers. Three of
them are in the recursive part and eight in the non-recursive
part. The structure of these multipliers is based on the
Baugh-Wooley algorithm.

This multiplier architecture was chosen because of its
ability to be pipelined [11,12]. For the purpose of reducing
times of partial products additions, Wallace [13] and Dadda
[14] have proposed techniques to manage the different
adders undertaking the partial product addition.

The Baugh-Wooley [12] multiplier allows the generation
of partial products for mixed products (two’s complement
(C2), no signed, no signed X C2) in a very regular structure.

The main blocks of the filter are: memories element;
multipliers; control blocks for the initialization; and adders.

ASIC features

The circuit has been realized with the CAD tool Cadence,
using the ES2 standard cell library in a CMOS 1.2 mm
technology. The edge operator features are: frequency
(post-layout), 20 MHZ (the multipliers until 50 MHz); it
processes 512 3 512 pixels images; area: 60 mm2; pixels
coding, 8 bits; all the internal arithmetic on 12 bits.

The results presented here confirm the complexity of realiz-
ing a recursive filter (processing a pixel to a frequency greater

RECURSIVE DIGITAL FILTER IMPLEMENTATION 187

Figure 11. General board architecture.
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than 10 MHz). The gradient (Gx = X+ + X2) can, in parallel,
only be obtained by the use of two circuits of this type.

Thus we propose another alternative to improve the
area/speed trade-off. This method consists of implementing
the filter directly without look-ahead calculation, but mov-
ing the registers in the recursive part of the filter [5].

Improvement of the Direct Filter Implementation

This section proposes a new approach based on an opti-
mized clocked circuit by relocating registers in order to
reduce combinational rippling. Unlike pipelining, direct
retiming does not increase circuit latency. As shown in
Figure 13, only the recursive part remains. Note that the two
architectures use the same functional elements connected in
the same manner, except for the locations of registers.

The frequency of this architecture is given by the time
through one multiplier and one adder. With this method
three adders are eliminated in the critical path, allowing a
speed increase of about 20% for the same area.

The choice for the final idea of the dedicated processor
has focused on this architecture.

Architecture

Due to the necessary memory space for the calculation of
the edge operator. an implementation of the architecture,

described in Figure 13, in a single programmable compo-
nent (FPGA) is not suitable. The structural implementation
of the ASIC has been done using a cell-based approach in a
CMOS 1 mm technology, with the CAD tool OPUS
(Cadence Design Framework II). The proposed architecture
is presented in Figure 14.

The different blocks are: the causal filter, the anti-causal
filter, the latches for loading coefficients, and one block to
change the sign of coefficients a1 and a2 (anti-causal filter).
The circuit is controlled by the following signals:
charge_coef, reset_coef, reset_filter, line_synchro, scan1
and scan2 (test of filters), clock. The output of filters are
given by Y+ and Y2. The gradient operation is (Gx), calcu-
lated on the exterior of the processor.
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Figure 13. Local retiming method. (–) Critical path.
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Filters

This circuit integrates a causal and an anti-causal filters.
Each of these filters is composed of five 12 3 12 bit multi-
pliers, 12-bit four adders and six 12-bit registers (Figure
4). Only the signs of the coefficients a1 and a2 are oppo-
site between the causal filter and anti-causal, which
justifies the necessity of inserting a supplementary logic to
change the sign of these coefficients (bloc «coeff-sign» on
Figure 14.

The cell-based approach seems sufficient for the realiza-
tion in ASIC. However, it is necessary to determine the
multiplier/adder which allows the best speed/area trade-
off. The multiplier thus generated has suitable
performances (less than 20 ns for multiplication 12 3 12
bits, for a silicon area lower than 1 mm2). The choice of
the adder is focused on an architecture of the type “carry-
select”, offering the best trade-off between speed and area
(two addition words of 12 bits in 5 ns and a silicon area
lower than 0.1 mm2). In a cell-based approach the multi-
plication and addition operation is achievable in less than
25 ns.

Coefficients

All five coefficients are in a two’s  complement notation,
and are serially loaded in 10 clock cycles into the latch by
the video bus (8 bits). Once the coefficients are loaded, they
are available at the input of the corresponding multiplier.
The coefficients can be initialized by setting the reset signal
to zero.

Results

Prototypes realized with this approach, in a CMOS 1 mm
technology, have been tested successfully. Indeed, the
obtained dedicated processor (Figure 15) is able to process
a pixel in 30 ns, with variable size images (64 3 64 – 1024
3 1024 pixels). The complexity of the circuit is about 
72 000 transistors for a silicon area of 29 mm2 (5.6 3 5.3
mm2).

Note that we have not integrated the LIFOS in order to
economize the silicon area.

Note also that the sensitive improvement of the speed of
functioning of the circuit, and the idea of using two identi-
cal circuits, the vertical and horizontal gradient, are
calculated in parallel.

Comparison of the different methods

We have proposed different solutions for the integration of
the third order recursive Canny-Deriche filter. In previous
sections we have described the direct implementation of
this filter, developed an adequate method to the accelera-
tion of this type of filter, and in the previous section we
have seen how a simple modification of the filter architec-
ture leads to a sensitive increase of performances. Table 1
compares performances of these different implementations.
To realize an objective comparison we have integrated a
CMOS 1 mm technology for all of these solutions.

According to the aimed application, this study brings dif-
ferent integration solutions. In all cases, it is conceivable to
process images of size larger than 512 3 512 pixel images.

Table 1. Comparison between the different methods of the opti-
mized Canny-Deriche filter implementations (Technology CMOS
1 mm ES2)

Estimated Real performances
Implementation performances

Area F (MHz) Area F (MHz)
(mm2) (mm2)

Direct 5.2 25 – –
Global retiming 15.3 71 24.5 66.5
Local retiming 5.3 40 7.5 37.5

Estimated: Pre-layout results take into account an estimation of
interconnect capacitances.

Real: Post-layout results are obtained after the place and route
phase and the extraction of capacitances.
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Figure 15. Chip picture. Real time edge detection operator (opti-
mized Canny–Deriche algorithm) with a clock rate of 33 MHz for
a silicon area of 29 mm2 (72 000 transistors), internal precision
12 bits.



The solution of the pipelined filter with look-ahead tech-
nique (global retiming) allows data flow in the order of 800
Megabits/s (66.5 MHz by pixel), three times more than a
direct filter implementation, but with a silicon area cost
increase of three times that the original.

The local retiming method proposed represents a good
area/speed trade-off. Indeed, the cost in area is minimal (area
identical with the direct implementation), with a data flow in
the order of 400 Megabits/s (37.5 MHz by pixel) that allows
us to process images of size 1024 3 1024 pixels in real time.

Conclusion

The digital recursive filter acceleration is a necessary step
for the implementation of algorithms in real time.

This algorithm-architecture-silicon adequation work for
a third order recursive filter has allowed us to review the
different recursive filter acceleration techniques.

We have thus demonstrated two techniques of filter inte-
gration. Firstly, the scattered look-ahead technique, with
power-of-two decomposition technique calculation, was
demonstrated on the first dedicated processor.  Secondly,
the more direct method allowed us to improve appreciably
the area/speed compromise, which is an important factor
during the design of the circuit

This study has been based on a high data flow dedicated
processor. The satisfactory results obtained have allowed us
to develop an image processing board around this processor.
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Appendix

Calculation of qi(k)

The recursive part of an Nth order filter with k pipeline
latches in its fee-back loop is described by:

The original transfer function corresponds to k = 1 and qi
(1) = ai. We obtain an equivalent 2k pipeline level by multi-
plying the numerator and denominator by:

where
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With the relationship between qi (2k) and

For an Nth-order odd filter:

For an Nth-order even filter:
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