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is the well-known Convolutional Face Finder (CFF) algorithm, which consists of a pipeline of convolution operations. We rely on
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between processing speed and area of the PE. We then build a parallel architecture composed of a PE ring and a FIFO memory,
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to process 127 QVGA images per second or 35 VGA images per second.
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1. INTRODUCTION

Face detection and analysis in images defining a parallel
and video streams is an important research field and has
many applications in security access control, image indexing,
and person identification. New applications on power-
constrained devices are foreseen, like video coding in mobile
videoconference and intelligent user interfaces.

Many algorithms for face detection have been proposed
in the past twenty years [1]. The chosen face detection
method is the Convolutional Face Finder (CFF), introduced
by Garcia and Delakis in [2]. It leads to the best performance
on standard face databases. The CFF is an image-based
neural network approach that allows robust detection in
real world images of multiple semifrontal faces of variable
size and appearance, rotated up to ±20 degrees in image
plane and turned up to ±60 degrees. In [3], the authors
have shown that the CFF algorithm can be implemented
efficiently on embedded software platforms, while keeping
a good detection rate and a low false alarm rate. Many
optimisations were done, leading to significant gains in

terms of processing speed and memory requirements, thus
enabling face detection on a mobile phone with five QCIF
(176 × 144) frames per second and only 220 KBytes of
memory [3]. However, face detection is most often the first
step of a face analysis process and will require a faster system.

There have been a few attempts at hardware systems for
face detection [4, 5] but the authors report lower detection
rates and higher false alarm rates than with the CFF [2], and
frame rates up to 50 QVGA (320 × 240) frames per second.
So far, no hardware implementation of the CFF algorithm
has been reported.

We, therefore, aim to design the first fast and robust
face detection optimised hardware by defining a parallel
architecture for the CFF algorithm. In [6], we have described
an optimised algorithm architecture matching methodol-
ogy, consisting of dataflow modelling of the algorithm,
parallelism extraction, and complexity analysis. Using this
information, we have performed a coarse-grain design space
exploration, which enabled us to specify an efficient parallel
architecture, consisting of a ring of PE where each PE
processes the whole face detection algorithm on a small block
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of data and communicates a small amount of data to one of
its neighbours. In this paper, we present the implementation
of such a PE capable of handling the successive convolutions
of the CFF algorithm.

In order to ease and accelerate the implementation of
complex algorithms, new methodologies have been studied
and developed in the past twenty years. High-Level Synthesis
(HLS) methods produce designs by specifying them using a
high-level language like C. Many approaches and tools for
HLS are now available [7–11] and are starting to be mature
enough to be used for complex designs. In this paper, we
propose a guided HLS approach using the UGH tool [11].
Using this approach, we are able to explore and implement
several PE alternatives.

The remainder of the paper is organised as follows.
In Section 2, we present the CFF algorithm and previous
works which have introduced a dataflow model of the
algorithm and a theoretical architecture of PEs efficiently
implementing this algorithm. In Section 3, we present our
high-level synthesis based exploration which enables us
to evaluate several implementation alternatives. We give
processing times and synthesis results for four PE alternatives
and select one optimal PE. In Section 4, we present a parallel
architecture composed of the previous PE, which enables
us to process images of different sizes. We, finally, give the
performances of this architecture, and we compare our face
detection systems with those in the literature. We will then
conclude this paper and give our perspectives in Section 5.

2. THE CFF ALGORITHM-OVERVIEW
AND PREVIOUS WORKS

2.1. Overview of the CFF algorithm

The Convolutional Face Finder was presented in [2] and
relies on convolutional neural networks introduced by
LeCun and Bengio [12].

In this paper, we will only consider the core of the face
localization process as depicted in Figure 1. The convolu-
tional neural network used to implement the face detector
has been previously optimised in [3], and consists of a set of
two different kinds of layers.

(i) CSi layers are called convolutional layers and contain
a certain number of planes. Each element in a plane
receives input from a small neighbourhood (biologi-
cal local receptive field) in the planes of the previous
layer. Each plane can be considered as a feature map
that has a fixed feature detector, which corresponds
to a pure convolution with a mask applied over the
planes in the previous layer. A bias is added to the
results of each convolutional mask. Multiple planes
are used in each layer so that multiple features can be
detected. Once a feature has been detected, its exact
location is less important. Hence, each convolutional
CSi layer is typically done with horizontal and vertical
steps of two pixels which correspond to perform
local averaging and subsampling operations. Then,
the results are passed through a hyperbolic tangent
function, used as an activation function. As a result,
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Figure 1: Convolutional Face Finder pipeline.

the CSi layer also performs a reduction by two of the
dimensionality of the input.

(ii) Ni layers are called classification layers and are
applied after feature extraction and input dimension-
ality reduction of CSi layers. These layers correspond
to a multilayer perceptron.

All parameters (convolution kernels, biases, neuron weights)
have been learnt automatically using a modified version
of the backpropagation algorithm with momentum [2]. In
the remainder of this paper, we will only consider the face
localization process when training has been completed.

The detail of CFF layers is given in Figure 1.

(i) CS1 layer performs convolutions with masks of
dimension 6 × 6. It contains four feature maps and
therefore performs four convolutions on the input
image.

(ii) CS2 layer performs 4 × 4 convolutions and has
fourteen feature maps. Each of the four-subsampled
feature maps of CS1 is convolved by two different 4×4
masks, providing the first eight feature maps of CS2.
The other six feature maps of CS2 are obtained by
fusing the results of two 4 × 4 convolutions on each
possible pair of CS1 feature maps.

(iii) N1 layer contains 14 sigmoid neurons. Each neuron
is fully connected to exactly one feature map of the
CS2 layer whose size is 6× 7.

(iv) N2 layer consists of a unique neuron fully connected
to all the neurons of the N1 layer. The output of this
neuron is used to classify the input image as face
(positive answer) or non-face (negative answer).

2.2. Previous works—dataflow model description

In [6], we have established a design space exploration
methodology based on dataflow modelling and parallelism
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Figure 2: Dataflow model for one PE of the CFF algorithm for
producing two data of N1 layer.

extraction of the CFF algorithm. This exploration has shown
that the maximum parallelisation efficiency is obtained by
massive data parallelism exploitation with a ring of PE.

In Figure 2, we detail the corresponding dataflow model
for a given path in the CFF algorithm, which involves four
successive PEs (N , N − 1, N − 2, and N − 3) and seven
successive temporal iterations for the calculation of two N1
layer output data.

Each PE processes the whole algorithm on a block of
8 lines of 12 pixels and transfers a small amount of data
(overlapping parts) to one of its neighbours. The several
slashed parts in Figure 2 represent the data to be transferred
between successive PEs.

To start with, CS1 6 × 6 convolutions are applied on a
12× 8 block of data with horizontal and vertical steps of two
pixels, thus producing 2 × 4 output data. Then, PE N has to
send a 2 × 2 output data to PE N + 1 and receives a 2 × 2
block from PE N − 1. Using data from previous iteration,
CS2 is applied on a 4×6 data block which produces two data
to be used as input of the N1 layer. These data are sent to the
nearest neighbour and each PE gathers five data from three
other PEs. With the six previous iterations, two N1 output
data and two face detections can be computed.

3. IMPLEMENTATION OF A PROCESSING ELEMENT

In this section, we detail a complete implementation of a PE
able to process the whole CFF algorithm. The design of this
PE is guided by the results of the DSE/AAA methodology
presented in [6]. The coarse-grain PE model previously
used in this exploration does not detail neither the internal
dataflow needed to process the convolutions nor the way the
coefficients for the convolutions are handled.

In this paragraph, we will describe the local dataflow
necessary to implement each CFF layer on the same PE. We
will see that the requirements of the CFF algorithm in terms
of dataflow management make it difficult to do an optimised
design in manual VHDL coding.

We will then present a high-level synthesis based imple-
mentation which enables us to quickly evaluate several
implementations of this complex dataflow. We then give
simulation and synthesis results of this implementation.
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Figure 3: Local dataflow of CS1 and kernel coefficient reusing.

3.1. Convolutions and local dataflow

In the design of a PE, we need to consider the local dataflow
of the computation in terms of input data and also in terms
of convolution kernel coefficients. Each PE processes CS1,
CS2, N1, and N2 layers on an input block of 12 × 8 pixels,
as described in Figure 2. To illustrate the complexity of the
local dataflow, we will focus on the CS1 layer whose details
are given in Figure 3.

The slashed part on the left side (resp., on the right side)
represents the first 6 × 6 input window (resp., the result of
CS1 on this input window). Dotted borders represent the
next horizontal and vertical input windows (resp., the next
results) considering horizontal and vertical steps of two
input pixels. There are eight input windows to compute,
depicted in Figure 3 by crosses on their top-left corner. These
windows comprise many overlapping data: 17% of the input
image block is involved in the computation of six different
windows.

Thus, the first coefficient of each kernel is applied to these
data, and each coefficient is used eight times. In addition,
each window is processed with four different CS1 kernels.
This complex local dataflow can also be represented sequen-
tially as a 5-deep “for” loop nest written in C language, as
depicted in Figure 4. The inner operation in the loop nest
is a Multiplication-Accumulation (MAC) between a kernel
coefficient, an input data, and a previous accumulation.
Furthermore, as presented in Section 2.1, the CS2 and N1
layers also have very complex local dataflow.

Our main goal is to design a PE which processes the
whole algorithm on a window of size 12 × 8 and com-
municates with its neighbours as described in the dataflow
definition in the Section 2.1. Concerning the local dataflow
of the algorithm, there are three main issues to cope with.

(1) PE memory organisation and bandwidth: each fea-
ture map has to be stored and read back in a parallel
way to enable local task parallelism (e.g., two CS2
feature maps computed in parallel).

(2) Fine scheduling and address generation: a choice
of scheduling has to be made to efficiently exploit
data locality and convolution regularity, and address
sequences have to be computed for each memory.

(3) Inter-PE communication and temporal iterations:
overlapping parts between PEs have to be transferred
and data between successive iterations have to be
stored and read back.
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Each issue can be addressed with several implementation
solutions. For example, issues one and three involve a
choice of the type of memory (FIFO or shared RAM, dual
port RAM, register banks, etc.) and its size, as well as
the definition of the links between PEs. In addition, there
are many fine scheduling choices to exploit different kinds
of parallelism, and for each scheduling, complex address
generation has to be computed for each memory.

The complexity and interdependency of these issues
make it hard to do a manual RTL description for each possi-
ble implementation solution. Even if theoretical study using
polyhedral models and loop transformation techniques [13]
could be done in order to define an optimised fine scheduling
of one loop nest, such a study on the whole algorithm is
beyond the scope of this paper.

In the next paragraph, we present a High-Level Syn-
thesis (HLS) flow which enables us to explore several
fine schedulings, memory organisations and bandwidths,
and inter-PE communications, in high-level C language,
and to automatically generate a synthesizable PE including
datapath, control and address generation. Our objective is
to quickly obtain an efficient and functional PE prototype
which will be used to implement the parallel dataflow
described in Section 2.2.

3.2. PE design using a high-level synthesis tool

(1) High-level synthesis

We have chosen to use an HLS approach in order to
accelerate exploration, implementation, and validation of the
PE. Many approaches for HLS have been proposed. There are
commercial tools [7–9] which provide complete frameworks
for hardware synthesis. Such tools are designed to accelerate
and ease the development in a hardware project. The
formalisms, formats, or platforms used are thus proprietary
and often very specific and locked. Therefore, these tools may
not be well suited for research purposes. On the contrary,
some academic tools are open-source [10, 11], and provide
the user with more flexibility and visibility on the tool
behaviour. In Section 3.3, we present our implementation
using UGH (User-Guided HLS) tool, an open-source HLS
tool integrated in a larger framework for SoC design called
dysident, and was developed by LIP6 laboratory. This tool is
adapted to our study for two main reasons. First, it allows
an architecture to be targeted by specifying the available
resources before synthesis. This allows us to rely on the
previous results of our manual PE implementation [6].
Second, UGH allows us to describe directly in C language all
data input/output transfers, address calculation and dataflow
management (e.g., ping pong strategies, modulo addressing,
multiple data sources, etc.), which are required for our
application [11].

(2) UGH design flow

A complete description of the UGH design flow can be found
in [11]. In this paper, we will focus on the first part of
UGH design flow (Figure 5) which performs a Coarse-Grain

{result[i1][i4][i0]+ = data[2× i0 + i2][2× i1 + i3]× coeff[i4][i2][i3] ;}

//filter number
// output window row number
// output window column number
// coefficient row number
// coefficient column number

for (i4 = 0; i4<4; i4 ++)
for (i0 = 0; i0<2; i0 ++)

for (i1 = 0; i1<4; i1 ++)
for (i2 = 0; i2<6; i2 ++)

for (i3 = 0; i3<6; i3 ++)

Figure 4: Sequential description of CS1: Loop nest.

UGH-CGS

DDP
Behavioral
C subset

VHDL
data path

VHDL
FSM/C

Figure 5: UGH coarse-grain scheduling design flow.

Scheduling (CGS) with a behavioural C description of the
algorithm and a Draft Data Path (DDP). The C description
uses a subset of the C language whose main limitation is the
forbidden use of pointers. Special data types are introduced
to handle variable bit sizes (e.g., unsigned integer coded on
4 bits). The DDP describes the available resources for the
target design (e.g., ALUs, RAMs, multipliers, bitwise logic,
etc.) and UGH-CGS binds and schedules the algorithm on
the available resources, and generates a VHDL Finite State
Machine (FSM) and a VHDL structural datapath which are
both synthesisable.

Two particular features of UGH have been much used in
our design.

(i) Automatic parallelisation, datapath, and address gen-
eration: UGH-CGS is able to detect parallelism at
the instruction level and schedules it on the available
resources which are specified in the DDP file. UGH-
CGS is then able to automatically generate the cor-
responding datapaths and all necessary links (multi-
plexers and corresponding connections) between the
resources, and also all control signals such as memory
addresses

(ii) Flexible communication model: inputs and outputs
can be specified in a direct and flexible way, by
simply writing specific “ugh read” and “ugh write”
operations at any time of the source C code, and by
defining the corresponding input or output port in
the DDP.

Given that the C description exhibits some parallelism at
the instruction level, the first feature makes it possible to
quickly test and compare several implementation alternatives



Nicolas Farrugia et al. 5

{result[i1][i4][i0]+= data[2× i0 + i2][2× i1 + i3]× coeff[i4][i2][i3] ;}

// output window row number

// output window column number

// coefficient row number
// coefficient column number
// filter number

for (i0 = 0; i0<2; i0 ++)
for (i1 = 0; i1<4; i1 ++)

for (i2 = 0; i2<6; i2 ++)
for (i3 = 0; i3<6; i3 ++)

for (i4 = 0; i4<4; i4 ++)

{result[i1][i4][i0]+= data[2× i0 + i2][2× i1 + i3]× coeff[i4][i2][i3] ;}

// output window row number

// coefficient row number
// filter number
// coefficient column number
// output window column number

for (i0 = 0; i0<2; i0 ++)
for (i2 = 0; i2<6; i2 ++)

for (i4 = 0; i4<4; i4 ++)
for (i3 = 0; i3<6; i3 ++)

for (i1 = 0; i1<4; i1 ++)

for (i0 = 0; i0<2; i0 ++)
for (i2 = 0; i2<6; i2 ++)

for (i4 = 0; i4<4; i4 ++)

// output window row number
// coefficient row number
// filter number

{result[1][i4][i0] += data[2× i0 + i2][0]× coeff[i4][i2][0];}
{result[2][i4][i0] += data[2× i0 + i2][2]× coeff[i4][i2][0];}
{result[3][i4][i0] += data[2× i0 + i2][4]× coeff[i4][i2][0];}
{result[4][i4][i0] += data[2× i0 + i2][6]× coeff[i4][i2][0];}
{result[1][i4][i0] += data[2× i0 + i2][1]× coeff[i4][i2][1];}
{result[2][i4][i0] += data[2× i0 + i2][3]× coeff[i4][i2][1];}
{result[3][i4][i0] += data[2× i0 + i2][5]× coeff[i4][i2][1];}
{result[4][i4][i0] += data[2× i0 + i2][7]× coeff[i4][i2][1];}
{result[1][i4][i0] += data[2× i0 + i2][2]× coeff[i4][i2][2];}
· · ·
· · ·
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Figure 6: Example of loop transformations done on CS1, interpretation, and an associated datapath.

(e.g., degree of parallelism). The second feature enables us to
describe our PE with the same dataflow as in our previous
dataflow modelling, by specifying the data acquisition and
the successive transfer between PEs as described earlier.

(3) Data paths and low level parallelisation

As explained in the previous paragraph, in order to
enable UGH-CGS to parallelise computation on the avail-
able resources (DDP), a manual loop transformation and
unrolling has to be done. For instance, in Figure 6 we present
a loop nest permutation and unrolling that enables the
exhibition of an inner loop with four independent MACs
using the same kernel coefficient. Then, specifying in the
DDP file that four multipliers and four adders are available,
UGH-CGS is able to automatically generate four appropriate
datapaths and all necessary control signals. An example of
such a datapath is shown at the bottom-left of Figure 6.

Such transformations have been done for each CFF layer.
Table 1 details for each CFF layer an example of loop nest
permutation enabling UGH to parallelise the algorithm on
four or eight datapaths.

(4) Memory issues

UGH memory models are only single or dual port memory.
In order to be able to parallelise the computation on several
datapaths, multiple memory banks have to be introduced,
thus increasing the memory bandwidth (e.g., to read four
distinct columns of input data for CS1, we use four

memories). This can be easily managed with UGH by
dispatching data on different C arrays. UGH generates one
memory bank per C array and handles address generation
for each memory. In this way, we control the memory access
parallelism, by specifying exactly the number and size of the
memory needed for our system.

Furthermore, address calculation has to be performed
carefully in order to handle seven successive iterations,
which can be simply done in C by computing the necessary
addresses using increments and modulos (e.g., in CS1, four
new lines are acquired and four previous lines are reused in
the current iteration).

3.3. PE design case study

(1) Algorithm description

Using techniques described above, we describe the full
CFF algorithm which consists of CS1, CS2, N1, and N2
layers. Each layer is described using a partially unrolled
loop nest with MAC operations. Using an appropriate DDP,
UGH successfully generates the FSM and the datapaths
implementing the entire algorithm. We also define the
appropriate I/O ports in the PE in order to handle input data
acquisition, coefficient loading, CS1 and CS2 data transfers,
and face detection results output.

(2) Design exploration and performance analysis

We use the flexibility offered by UGH to explore several
architecture alternatives for the PE. This can be done by
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Table 1: Low-level parallelisation of the CFF algorithm.

Layer Number of windows Number of filters Total complexity Parallelisation scheme
on 4 datapaths

Parallelisation scheme
on 8 datapaths(convolution size) (data parallelism) (task parallelism) (number of MAC)

CS1 (6× 6) 8 4 1152 4 windows 4 windows and 2 filters

CS2 (4× 4) 2 20 664 2 windows and 2 filters 2 windows and 4 filters

N1 (6× 7) 2 14 1176 2 windows and 2 filters 2 windows and 4 filters

N2 (1× 1) 2 14 28 2 windows and 2 filters 2 windows and 4 filters

Table 2: Cycle-time details for each PE version.

Layer PEA PEB PEC PED

Number of cycles/efficiency

CS1 1344/0.86 740/0.78 437/0.66 261/0.55

CS2 738/0.87 412/0.81 251/0.66 252/0.33

N1 + N2 1346/0.89 749/0.80 457/0.66 466/0.33

modifying the available resources given in the DDP, and
by doing some transformations in the C source code. In
order to compute the convolutions, we describe datapaths in
the DDP, with MAC blocks performing multiply accumulate
operations. Each datapath contains a MAC block and one to
four register files. Each register file is composed of four 16
bits registers. We have explored four datapath alternatives to
build the following PE versions.

(i) PEA: 1 datapath only with 1 MAC block, 4 register
files.

(ii) PEB: 2 datapaths, each with 1 MAC block, 2 register
files.

(iii) PEC : 4 datapaths, each with 1 MAC block, 1 register
file.

(iv) PED: 8 datapaths, each with 1 MAC block, 1 register
file.

Figure 7 depicts the architecture of PEC . Dotted lines and
boxes represent everything that is automatically handled by
UGH: links, FSM, addresses, and so on. The remaining grey
parts are provided in the DDP. TH blocks represent activa-
tion functions which are applied after each convolution.

We then obtain 4 PE versions containing 1, 2, 4, and
8 MAC blocks, respectively. We have validated the VHDL
codes generated by UGH using the same test sets as in the
behavioural initial C description of the PE and in a VHDL
test bench. The processing cycle times for each version are
summed up in Table 2, where each layer of the CFF algorithm
is detailed. We also point out in this table the efficiency
of parallelisation, by computing the theoretical minimum
number of cycles Tth achievable for each CFF layer (the
number of MAC operations given in Table 1 divided by
the number of MAC blocks); the efficiency is then equal
to Eff = Tth/Tpar. We can see in Table 2 that the average
efficiency of PEA is about 0.9. As PEA contains only 1
MAC, it allows no possible parallelisation. The efficiency
of PEA can be interpreted as follows. 90% of the time

is used for computing the MACs and the remaining 10%
corresponds to controlling overhead due to the handling of
loops and addresses. PEB and PEC have average efficiencies
of 0.8 and 0.7, respectively, which corresponds to average
acceleration factors of 1.6 and 2.8. This efficiency remains
high considering the complexity of the algorithm. However,
we can point out that for PED, there is a significant loss
in efficiency which can be interpreted as follows. The CS1
layer is successfully parallelised on 8 MACs but for CS2 and
N1 N2, memory bandwidth is not large enough to enable
an efficient use of 8 MACs simultaneously. For instance, an
efficient parallelisation of N1N2 on 8 MACs would require
a simultaneous access to four distinct coefficients and eight
distinct data. This could be addressed by using data and
coefficient buffer memories to provide more local parallelism
and reusing of data.

Synthesis results for each version are given in Table 3 for a
Virtex-4 SX35 FPGA. No major modification has been made
on the VHDL code generated by UGH. Implementation
memory banks are balanced between flip flops, distributed
RAM (RAM implemented in logic blocks [14]), and block
RAM (embedded static RAMs), depending on the memory
bank size and the number of ports needed. DSP48 blocks
are used to implement MAC blocks in the datapaths. The
maximum frequency of each version of the PE is 80 MHz
and is mainly due to unpipelined utilisation of DSP48
blocks and the large number of memories which imply
much multiplexing logic. From Table 3, we see that synthesis
results are close from one version to another. This is due
to the fact that the size of the PEs is mostly because of the
size of the control unit (finite state machine) and of the
multiplexers, rather than the datapaths which are only MAC
blocks and registers. Hence, we can conclude that PEC is
a good compromise as it enables a high acceleration factor
(2.7) and requires about the same resources as PEA and PEB.
Therefore, we choose PEC as the best implementation for the
PE (in the rest of the paper, we will refer to PE instead of
PEC) because it achieves a good tradeoff between size and
efficiency.
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Table 3: Synthesis results for each PE version on Virtex-4 SX35 FPGA.

PEA PEB PEC PED

Device occupancy/capacity

Number of slices 2258/15360 2259/15360 2466/15360 2866/15360

Number of flip flops 363/30720 388/30720 345/30720 457/30720

Number of block rams 15/192 19/192 19/192 19/192

Number of DSP48 5/192 6/192 8/192 12/192

Maximum frequency 80 MHz 80 MHz 80 MHz 80 MHz

Control path

ALU ALU ALU ALU
FSM Coefficient

memory
+ Registers for addresses
+ Registers for loop indexes

I/O
ports

Data
memories Muxes

Muxes

MAC R1 R2 R3 R4

MAC R1 R2 R3 R4

MAC R1 R2 R3 R4

MAC R1 R2 R3 R4

TH TH TH TH

Figure 7: Architecture of a PE with 4 datapaths (PEC).

4. MULTI-PE PARALLEL SYSTEM

In this section, we present a parallel architecture based on
the previously designed PE. In Section 4.1, we describe this
architecture and its application for processing a whole image
of any size. In Section 4.2, we give its performances, in terms
of frame processed per second, for different image sizes,
and finally, we compare these performances to other face
detection systems.

4.1. Generic parallel architecture

In previous work [6], we have shown that a good tradeoff
between efficiency and number NPE of PE is obtained when
the input image is divided into P = NPE blocks of 8 rows of
12 pixels. Each block is processed by one PE, and each PE is
connected to two other PEs, thus building a ring architecture.
Considering data overlapping, this allows the processing of
an image of width 12 + (NPE−1)∗8 and of any height greater

or equal to 36 (the minimum number of rows necessary to
compute a face detection). We rely on this result to establish
a generic architecture using a ring of PEs and a FIFO memory
(Figure 8).

We divide the input image into vertical strips of width
12 + (NPE − 1)∗8 and process each strip by dividing it into
blocks of 12 × 8 as described above. The FIFO is connected
to the first and the last PEs of the ring and is used to provide
the overlapping data from the previous strip and to write the
overlapping data for the next one (grey blocks in the top of
Figure 8). We have successfully simulated a 4 PE ring with
FIFO. Synthesis estimates show that a ring of 25 PE fits in a
Virtex-5 LX 330 device, the largest FPGA available.

4.2. Performances

In this architecture, each PE works synchronously. At each
vertical iteration, four new input lines are loaded in the PEs
and if we consider that this load is done in pipeline with the
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Table 4: Comparison of hardware face detection implementation.

Implementation Frame size Frame rate Clock freq. (MHz)

CFF embedded software [3] 176× 144 10 624

Kianzad et al. [15] 320× 240 12 125

McCready [16] 320× 240 30 12,5

Theocharides et al. [4] 320× 240 52 500

Nguyen et al. [5] 320× 240 42 12,5

Hori et al. [17] 320× 240 30 100

CFF 4 PE ring 320× 240 30 80

CFF 25 PE ring 320× 240 127 80

CFF 25 PE ring 640× 480 35 80

12 4

PE N PE N − 1 PE 2 PE 1

· · ·

· · ·

To
FIFO

From
FIFO

PE
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PE
3

PE
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PE
N
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1
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Figure 8: Generic ring and a FIFO architecture.

algorithm computation, we can give the processing time of
the algorithm on a complete image of size width L and height
M using the following formulae.

(i) TCFF: time to process the CFF algorithm on one 8×12
block.

(ii) Number of vertical iterations: Nit = (M − 4)/4.

(iii) Number of vertical strips per PE: Nstr = (L− 4)/(8×
NPE).

(iv) Processing time of a strip: Tstr = Nit∗TCFF.

(v) Total processing time: Ttot = Nstr∗Tstr.

In order to detect faces of different sizes, an image pyramid
is built to apply the CFF algorithm to each image (see [3]).
This pyramid is constituted of a set of subimages obtained
from the initial image by applying a reduction factor of 1.2
to each dimension. We can obtain an estimation of the total
processing time of the entire pyramid by adding together the
processing times of each subimage.

In Figure 9, we sum up the performances (in frames per
second) of this parallel architecture on several image sizes
and for 1 to 64 PEs (to improve image readability both
axes have logarithmic scales). We also represent the real-time
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Figure 9: Performances of PE ring architecture at 80 MHz.

threshold of 25 fps on this figure. An architecture consisting
of four PEs fits in a Virtex-4 SX35 FPGA and performs real-
time face detection at 30 QVGA images per second. When
considering a larger system with 25 PEs, we can process
127 QVGA images per second, which leaves enough time to
consider other face analysis tasks in real-time following face
detection.

Table 4 presents a comparison between the main hard-
ware implementations of face detection found in literature.
All these implementations are done on FPGA hardware and
therefore run at relatively low clock frequencies (except [4]
which is an ASIC implementation). We can see that our
system compares well with the others in terms of frame
rate, depending on the number of PEs implemented. The
main drawback of the other implementations is usually a
significant loss in overall detection rates or even a lack of
detection performance measure. most works do not give
results of detection accuracy of their hardware implemen-
tation. Contrary to this, our system has the same detection
performances as the original CFF software implementation
[3], therefore it is very robust in terms of detection accuracy
and has a very low false alarm rate [2].
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Area comparison is not straightforward since the FPGA
targets of the considered implementations are different. In
[16], the authors report an area of 89856 Logic Elements
and approximately 442 Kbits of memory on a system which
contains eighteen 10k100 Altera FPGAs. In [5], the authors
report an area of 15050 Logic Elements and 268 Kb of
memory on a Altera Stratix FPGA. Our 4-PE ring on Virtex-
4 uses approximately 8802 Xilinx Slices and about 1272 Kb
of embedded memory. We cannot make a direct comparison
between these implementations but a rough estimate can be
given by considering that one Altera Logic Element is the
equivalent of one to two Xilinx Virtex-4 Slices. Hence, our
system has a slightly higher hardware cost in terms of logic
and uses much more embedded memory. This is due to the
large number of coefficients and temporary results which
have to be stored in the FPGA. However, as said earlier, our
system is capable of a very robust face detection with complex
backgrounds.

5. CONCLUSIONS—PERSPECTIVES

We have implemented a parallel architecture for face detec-
tion composed of Processing Elements based on the CFF
algorithm. Using a high-level synthesis approach, we were
able to explore several PE architecture alternatives. We
selected a PE with four datapaths exploiting efficiently local
parallelism of the algorithm. This PE has been successfully
simulated and synthesised on a Virtex-4 SX35 FPGA, and
occupies approximately 16% of the device, and is capable
of running at a maximum frequency of 80 MHz. We have
then presented a ring of PE with a FIFO memory, which
constitutes a generic parallel and scalable architecture able
to process images of variable sizes. Such an architecture with
four PEs can process up to 30 QVGA images per second. An
architecture with 25 PE achieves real-time face detection of
VGA images.

We are currently working on optimising this PE in order
to be able to implement more PE in our targeted FPGAs,
and to increase its maximum clock frequency. In future work,
we will investigate the generalisation of such modelling and
architectures for other algorithms based on convolutional
neural networks. We will also investigate the opportunity of
using source-to-source transformations in order to enhance
the user-guided approach proposed by UGH, by providing
a semiautomated tool which transforms the C code before
inputting UGH; such techniques can be used to ease memory
partitioning and loop unrolling.
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