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In order to solve the Semsitivity—stability’ problem—and its immediate correlate, the
problem of sequential learning—it is crucial to develop connectionist architectures that are
stmudtaneously sensitive to, butr not excessively disruptred by, new inpur. French (1992)
suggested that to alleviate a particularly severe form of this disruption, catastrophic
Jorgetting, it was necessary for networks to separate dynamically their internal representa-
tions during learning. McClelland et al. (1995) went even further. They suggested that
nature’s way of implementing this obligatory separation was the evolution of two separate
areas of the brain, the hippocampus and the neocortex. In keeping with this idea of
radical separation, a ‘pseudo-recurrent’ memory wmodel is presented here thar partitions a
connectionist network nto two functionally distinct, bur continually iteracting areas. One
area serves as a final-storage area for representations; the other is an early-processing area
where new representations are first learned by the system. The final-storage area continually
supplies internally generated parterns (pseudoparterns; Robins, 1995), which are approxi-
mations of its content, to the early-processing area, where they are interleaved with the
new patterns to be learned. Transfer of the new learning is done either by weight-copying
from the early-processing area to the final-storage area or by pseudoparttern transfer. A
number of experiments are presented that demonstrate the effectiveness of this approach,
allowing, in particular, effective sequential learning with gradual forgetting tn the presence
of new nput. Finally, it is shown that the two interacting areas automatically produce
representational compaction and it is suggested that similar representational streamlining
may exist in the brain.

KEYWORDS: Pseudopatterns, sensitivity—stability transfer, catastrophic interference,
dual memory, semi-distributed representations.

1. Introduction

One of the most important problems facing connectionist models of memory—in
fact, facing any model of memory-—is how to make them simultaneously sensitive
to, but not disrupted by, new input. This problem is often referred to as the
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‘sensitivity—stability’ dilemma (Hebb, 1949) or the ‘stability—plasticity’ problem
(Carpenter & Grossberg, 1987). It is particularly relevant for connectionist net-
works, especially since they can be afflicted by a particularly severe manifestation
of the sensitivity—stability problem known as catastrophic interference. Catastrophic
interference is the tendency of neural networks to forget abruptly and completely
previously learned information in the presence of new input (McCloskey & Cohen,
1989; Ratcliff, 1990).

Connectionist networks and look-up tables lie at opposite ends of the stability -
sensitivity spectrum. While the latter are completely stable in the presence of new
information, they lack the crucial ability to generalize on new input or to function
effectively with degraded input. By contrast, standard backpropagation networks
are highly sensitive to new input because of their highly distributed, overlapping
internal representations. Internal representations of this kind are responsible for
these networks’ much touted abilities to generalize on previously unseen input, but
they are also responsible for the radical loss of old information when learning new
information.

Because of the sensitivity—stability problem, all the patterns given to a connec-
tionist network must be learned ‘concurrently’. In other words, the entire set of
patterns to be learned must be presented over and over, each time adjusting the
weights of the network by small increments until the network gradually finds a
weight-space solution for the entire set of patterns. This is a far cry from how
humans learn a series of patterns, however. Much of human learning tends to be
sequential. A particular pattern is learned, then another, and another, and so on.
While some of the earlier patterns may be seen again, this is not necessary for them
to be retained in memory. As new patterns are learned, forgetting of old, unrepeated
patterns occurs gradually as a function of time.

In this paper, a connectionist memory model will be presented that is capable
of effective sequential learning, exhibiting gradual forgetting where a standard
backpropagation architecture forgets catastrophically. The proposed architecture
relies on separating the previously learned representations from those that are
currently being learned. Further—and crucially—a method is described in which
an approximation of the previously learned data (not the original patterns them-
selves, which the network will not see again) will be extracted from the network
and will be mixed in with the new patterns to be learned.

2. Distributed Models that Are Sensitive and Stable in the Presence of
New Information

It is not the case that all models that rely on distributed, overlapping representations
forget catastrophically in the presence of new information. In particular, the
class of convolution—correlation models (e.g. CHARM (Metcalfe-Eich, 1982) and
TODAM (Murdock, 1983)), and sparse distributed memory (SDM) (Kanerva,
1989) can learn new information in a sequential manner and can, in addition,
generalize on new input. The performance of these models on previously learned
information declines gradually, rather than falling off abruptly, when learning new
patterns. One might argue that CHARM, TODAM and SDM are not ‘connec-
tionist” models. While, strictly speaking, this may be true, convolution—correlation
models are readily shown to be isomorphic to sigma-pi connectionist models and
SDM has been shown to be isomorphic to a Hopfield network (Keeler, 1988).
How do these models achieve stable, sensitive performance in the presence
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of new input? All of them, in one way or another, rely on two principles:
(i) representational separation and (ii) explicit use of previously stored representa-
tions to influence the course of new learning. In the case of convolution—correlation
models, representational separation is achieved by orthogonal recoding of the input
and SDM does so by the use of sparse coding. In this way, representational overlap
between newly arriving and previously stored patterns is reduced. But in order to
produce the desired abilities to generalize, previously stored information is used to
affect the memory trace of incoming information. For example, in both CHARM
and SDM the new input vector is ‘folded into’ an internal representation of the
previously learned input. These two principles form the basis of the pseudo-
recurrent architecture proposed in this paper.

3. The Need For and Consequences of Separating Old and New
Representations

Most approaches to reducing catastrophic interference in traditional connectionist
architectures have relied on reducing the overlap of representations either by
orthogonal recoding of the input patterns (Korge, 1990; Lewandowsky & Goebel,
1991; Lewandowsky & Shu-Chen, 1993) or, alternatively, by orthogonalizing the
network’s hidden layer representations (French, 1992, 1994; Krushke, 1993;
McRae & Hetherington, 1993; Murre, 1992). A thorough discussion of these
techniques and an analysis of the underlying causes of catastrophic interference
can be found in Sharkey and Sharkey (1995).

McClelland ez af. (1995) have argued that radical separation of representations
might have been the approach arrived at by evolution in the development of the
hippocampus and the neocortex. They justify the brain’s bi-modal architecture as
follows:

The sequential acquisition of new data is incompatible with the gradual discovery of

structure and can lead to catastrophic interference with what has previously been learned.

In light of these observations, we suggest that the neocortex may be optimized for the

gradual discovery of the shared structure of events and experiences, and that the

hippocampal system is there to provide a mechanism for rapid acquisition of new
information without interference with previously discovered regularities. After this initial
acquisition, the hippocampal system serves as a teacher to the neocortex ...

But this still leaves unanswered a crucial question—namely: how does the neocortex
acquire new information, whether it comes from the hippocampus or elsewhere,
without disrupting information already stored there?

McClelland et al. distinguish between ‘focused’ and ‘interleaved’ learning. In
focused learning, new information is simply presented to the system, perhaps a
number of times, but without interleaving it with old, previously acquired know-
ledge. In interleaved learning, the new knowledge is interleaved with the rest of the
database of already acquired knowledge. They show that significant disruption of
previously acquired information (very much like catastrophic interference) occurs
in focused learning.

Their solution involves the very gradual incorporation of the new information
from the hippocampus into the neocortical structure (i.e. long-term memory).
Hippocampal representations very gradually train the neocortex. This is very likely
correct. The problem, as we will show later, is that no matter how slowly the
hippocampal information is passed to the neocortex, radical forgetting of the old
information can result, unless a way is found to interleave the already stored
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neocortical patterns with the new patterns being learned. This interleaving cannot
always use ‘the rest of the the [original] database’ of previously learned patterns
because many of these patterns will no longer be explicitly available for re-
presentation to the network. Once we have learned about penguins and wish to
learn about, say, mice or tractors, we do not have to continue to be shown
penguins so as not to forget them. Unfortunately, this is necessary for standard
backpropagation networks to prevent forgetting of previously learned patterns.
When learning new information, the previously learned information must once
again be explicitly presented to the network, otherwise it may be completely
forgotten.

The ‘pseudo-recurrent” memory model proposed in this paper will provide a
way to refresh the network automatically without recourse to the original patterns.
Instead of the original patterns, internally produced approximations of these
patterns, called pseudopatterns (Robins, 1995), will be used and interleaved with
the new patterns to be learned. The architecture proposed will argue for two
functionally distinct areas of long-term memory: one, an ‘early-processing area’, in
which new information will be initially processed, and a second, a ‘final-storage
area’, in which information will be consolidated. This model of long-term memory
will suggest a means of consolidating information in long-term memory that has a
number of compelling neurobiologically parallels. Some of these are detailed in
Robins (1996). He discusses, in particular, parallels between consolidation of
learning during sleep and pseudorehearsal (i.e. the use of pseudopatterns). Two of
these parallels are of particular interest here:

Preserving the structure of old informarion

While operating in different domains, both pseudorehearsal and sleep consolidation

have the same underlying function—the integration of new information into old

information while preserving the structure of the old information.

Rehearsing approximarions of old information

While it is an effective method in ANNSs, rehearsal is unlikely to be a realistic model of

biological learning mechanisms, as in this context the actual old information (accurate

and complete representation of all items ever learned by the organism) is not available.

Pseudorehearsal is significantly more likely to be a mechanism which could actually be

employed by organisms as it does not require access to this old information, it just

requires a way of approximating it.

In addition, the pseudo-recurrent network architecture, relying on continual inter-
action of an early-processing area and the final-storage area via pseudopatterns,
will produce precisely the type of semi-distributed representations that French
(1992, 1994) felt were essential to reduce catastrophic interference. Unlike French
(1992, 1994), however, in which specific learning algorithms were incorporated to
produce the semi-distributed representations that alleviated catastrophic interfer-
ence, in the case of the pseudo-recurrent network, these internal semi-distributed
representations emerge naturally.

In an attempt to relate this model to other well-known high-level phenomena,
we will also show that this model, unlike standard backpropagation, exhibits a
plausible list-length effect (Atkinson & Joula, 1973; Gillund & Shiffrin, 1984;
Ratcliff & Murdock, 1976; Strong, 1912). In addition, it also shows a list-strength
effect (Murnane & Shiffrin, 1991; Ratcliff er al., 1990; Shifirin er al., 1990).

4. Training in Standard Error-driven Connectionist Networks

The ideal way, of course, to solve the stability—sensitivity problem would be to
store all previously learned patterns ‘out of reach’ of the disruptive influence of
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new patterns. Then, when new input was presented to the system, all of the
previously learned patterns would be taken out of storage, so to speak, and would
be mixed with the new patterns. The system would then learn the mixed set of old
and new patterns. After the augmented set of patterns had been learned by the
network, they would all be put in storage, awaiting the next time new information
was presented to the network. There would be no forgetting, catastrophic or
otherwise, in this ideal world and there would be no deleterious effect on the
network’s ability to generalize, catagorize or discriminate. The system could learn
the new patterns and the old patterns would be unaffected by the acquisition of
this new information.

Unfortunately, this way of learning new data is rarely possible in the real world
except in the most artificial situations. It is in essence impossible to store explicitly
all, or even a small fraction, of previous training exemplars for future learning.
True, one could argue that they are ‘stored’ in the environment around us. My
internal representation for, say car or child is constantly being interleaved with any
new input that I learn since these exemplars are continually available in the
environment. But my grandfather’s kitchen table is not. It is an object—a perfectly
ordinary hand-made wooden table—that I have not seen in 20 years, but that 1
nonetheless still remember with vivid clarity. Since I have seen literally thousands
of tables (and all manner of other objects) since that time and if interleaved pattern
presentation was necessary to avoid forgetting, then I should have a great deal of
trouble remembering his kitchen table. Why has this memory remained intact in
the absense of any interleaved (real) input from the environment? [ suggest that an
internal approximation of the original pattern is generated in long-term memory
and it is this approximation that, in the absence of the real pattern-in-the-
environment, serves to reinforce continually the long-term memory trace of the
original pattern.

In summary, in order to avoid severe interference in long-term memory, new
input must be mixed with some approximation of the originally learned patterns.
The better the approximation, the less the interference. In the ideal case where the
originally learned patterns are still available for interleaved presentation, forgetting
is eliminated altogether. As we have seen, sometimes the original patterns are
available (as in the case of car or child) but, more often, internally generated
approximations of the original patterns must suffice. This paper presents an
implementation of a long-term memory model that uses internally generated
pseudopatterns as the means of mixing old and new information. This model is
shown to be capable of effective sequential pattern learning and produces gradual
forgetting rather than catastrophic forgetting. The use of pseudopatterns to improve
performance of connectionist networks on catastrophic forgetting was first proposed
by Robins (1995) and their plausibility has been further explored in Frean and
Robins (1996) and Robins (1996).

5. The Architecture of the ‘Pseudo-recurrent’ Memory Model

The architecture discussed in this paper consists of a feedforward backpropagation
network that is divided into two parts, one used to help train the other (Figure 1).
We will call the left-hand side of the network the ‘early-processing memory’ and
the right-hand side the ‘final-storage memory’. The system works as follows. When
a new pattern from the environment, consisting of an input and an associated
output (the ‘teacher’), is presented to the system, this will cause activation to
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Figure 1. The architecture of the pseudo-recurrent network.

spread through both sides of the network. The fact that the new pattern is ‘real’
(i.e. from the environment) means that its teacher will inhibit the output coming
from final storage. Thus, the new pattern will be learned first in the early-processing
memory by the standard backpropagation algorithm.

At the same time, a number of ‘pseudopatterns’ will be generated in the final-
storage memory. In other words, random input will be fed into the network.
Activation will spread through both the early-processing and final-storage areas of
the network. Crucially, the output of this random input sent through the final-
storage part of the network will be used as a teacher for the early-processing part
of the network. In other words, the early-processing memory will then learn a
series of pseudopatterns produced in the final-storage memory that reflect the
patterns previously stored in final-storage. So, rather than interleaving the real,
originally learned patterns with the new input coming to the early-processing
memory, we do the next best thing—namely, we interleave pseudopatterns that are
approximations of the previously stored patterns. Once the new pattern and the
pseudopatterns are learned in the early-processing area, the weights from the early-
processing networks are copied to the corresponding weights in the final-storage
network.

The architecture is called ‘pseudo-recurrent’ not only because of the recurrent
nature of the training of the early-processing memory by the final-storage memory,
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but also as a means of acknowledging the all-important means of interleaving
information from final-storage and the new information arriving at the early-
processing area—namely, pseudopatterns.

A specific example may help to clarify the learning mechanism. Suppose that
there are 20 patterns, P, P,, ..., Py,. Each of these patterns, P, consists of an
input and an output (‘teacher’) association (I, 7;). The system will be required to
learn all 20 patterns sequentially. In other words, each individual pattern must be
learned to criterion—along with all the pseudopatterns generated by the final-
storage memory—before the system can begin to learn the subsequent pattern. To
learn pattern P, its input /, is presented to the network. Activation flows through
both parts of the network but the output from the final-storage part is prevented
from reaching the teacher nodes by the ‘real’ teacher 7). The early-processing
network then adjusts its weights with the standard backpropagation algorithm using
as the error signal the difference between 7| and the output O,, of the early-
processing network. Internally created pseudopatterns from the final-storage mem-
ory are now generated and will be learned by the early-processing memory. This
is done by presenting random input to the network, which causes activation to
spread through both the early-processing and the final-storage memories. For
‘pseudo’-input, unlike for ‘real’ input, there is no ‘real’ teacher to inhibit the arrival
of final-storage activation to the teacher nodes (i.e. the third layer of the final-
storage network). The activation on the teacher nodes is thus produced by the
spreading of activation by the pseudo-input through the final-storage memory.
These teacher nodes then serve to train the early-processing memory.

It is instructive to examine in detail the operation of one of the pseudopatterns.
A random input pattern, i,, is presented to the input nodes of the system. This
input produces an output, o,, at the output layer of the early-processing memory
and also produces an output, 7,, on the teacher nodes of the final-storage memory.
This input—output pair (7, r,) defines a pseudopattern, y,, that reflects the contents
of the final-storage memory. The difference between r, and o, determines the error
signal for changing the weights in the early-processing memory. The other random
inputs, i, i, ..., I,, are successively presented to the system and the resulting
pseudopatterns, ., ¥, ..., ¥, will also be learned by the early-processing memory.
Once the weight changes have been made for the first epoch consisting of {P,, ¥,,
Was ..., ), the early-processing memory cvcles through this set of patterns again
and again until it has learned them all to criterion. By learning the pattern P, the
early-processing memory is learning the new information presented to it; by
learning the pseudopatterns v, ..., ¥, the early-processing memory is learning
an approximation of the information previously stored in final storage. Obviously,
the more pseudopatterns that are generated, the more accurately they will reflect
the contents of final storage. (However, with too many pseudopatterns the early-
processing memory may fail to converge. The type and number of pseudopatterns
to use is an area of on-going investigation.) Once learning in the early-processing
network has converged for P, ., ,, ..., t,, the early-processing weights then
replace the final-storage weights. In other words, the early-processing memory
becomes the final storage memory and the network is ready to learn the next
pattern, ;.

In the network as described in this paper, a new set of pseudopatterns was
chosen each time a new pattern had to be learned. In other words, each time a
new pattern had to be learned, the pseudo-inputs to the final-storage memory were
randomly chosen. Another technique would be always to use the same set of
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pseudo-inputs. Or it might even be possible for the network gradually to learn a
set of pseudo-inputs that would generate pseudopatterns that reflect the contents
of the final-storage area better than pseudopatterns with random pseudo-inputs.
For example, if we have a yes—no classifier network (i.e. all learned items produce
either a 1 or 0 on output), pseudo-inputs that produced outputs close to 0 or 1
might be ‘better’ than pseudo-inputs that were purely random. Another important
issue is: must the early-processing area converge for the entire set {P, ¥, Y5, ...,
Y.}, as is done here, or only for P, as is done in Robins (1995)? These questions
are all the focus of on-going research.

6. Databases Used for the Experiments

A number of experiments were run to test this architecture. Four different data
sets were used for the experiments discussed in this paper. These were:

e A slightly modified version of data used in French (1992). These patterns are
used to show that even if a system learns new data very slowly, in the absence of
interleaving of previously learned patterns (or approximations of these patterns)
serious interference can still occur.

e A mushroom database (Murphy & Aha, 1992) in which mushrooms were
classified as either edible or poisonous on the basis of 22 technical attributes
such as cap shape, cap color, stalk shape, veil color, gill color, habitat, etc. There
were up to 12 different possibilities for each attribute.

e The 1984 US Congressional Voting Records database (Murphy & Aha, 1992),
also used to study catastrophic interference in French (1992, 1994). Inputs
consisted of ‘yea—nay’ votes (i.e. 1 or 0) on 16 separate issues and the output
was the political party to which the voter belonged (Republican or Democrat).

e The original cat and dog pictures used by Eimas er a/. (1994) and Mareschal
and French (1997) to study infant categorization. These consisted of 18 dogs
and 18 cats classified according to the following traits: head length, head width,
eye separation, ear separation, ear length, nose length, nose width, leg length
vertical extent and horizontal extent.

7. Overview of the Tests of the Pseudo-recurrent Memory Model

The tests described here for the pseudo-recurrent memory model will be of several
types. The first experiment shows that, without some form of interleaving of old
information (or approximate old information) during learning of new information,
regardless of how slowly the new information is learned, severe forgetting of the
old information can occur. Next, we will show that if a network can continually
train itself (pseudo-recurrence) on an approximation of previously acquired
information, that the problem of catastrophic interference is drastically reduced
and the system will not be overly disrupted by new information. We then show
how this type of system can achieve true sequential learning, gradually, rather than
suddenly, forgetting old information. We then show, somewhat surprisingly, that
this memory model automatically produces the type of semi-distributed internal
representations that were suggested by French (1992, 1994) as a means of
overcoming catastrophic forgetting. However, in French (1992, 1994) the learning
algorithms were specifically tailored to produce this kind of semi-distributed
representation. In the present model, however, these semi-distributed representa-
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tions emerge as a natural by-product of the architecture. We also demonstrate that
the system exhibits both plausible list-length and list-strength effects. Finally, we
show how a straightforward extension of the model allows the requirement of an
equal number of hidden units for the early-processing and final-storage memories
to be dropped. This extension involves using pseudopatterns to transfer information
between both parts of the memory. To recapitulate, the experimental sequence is
as follows:

Experiment 1. To show the necessity of interleaving old learning with new learning
and why, if this is not done, severe interference can result.

Experiment 2. To show that the pseudo-recurrent architecture works with real
data from a real-world database.

Experiment 3. To demonstrate the pseudo-recurrent architecture’s ability to
achieve truly sequential learning with no refresh from previously learned items.
This shows that the present architecture exhibits far more gradual (i.e. realistic)
forgetting that standard backpropagation.

Experiment 4. To show that this memory model automatically produces the semi-
distributed internal representations that French (1992, 1994) concluded were
necessary to alleviate catastrophic interference.

Experiment 5. This experiment is an attempt to relate directly the model to the
psychological literature involving sequential learning. The model reproduces both
the list-length and list-strength effects referred to by Murnane and Shiffrin (1991)
and others.

Experiment 6. To show that the model can be easily and effectively extended by
allowing information to pass back and forth from the early-processing to the final-
storage memory by means of pseudopatterns.

Most papers on catastrophic interference (e.g. French, 1992, 1994; Lewandowsky
& Goebel, 1991; Lewandowsky & Shu-Chen, 1993; McRae & Hetherington,
1993; Robins, 1995) since Hetherington and Seidenberg (1989) have used an
Ebbinghaus-like ‘savings’ measure of forgetting. In other words, the network is
trained to convergence on a particular set of data, D,, and then given a new set of
data, D, to learn. After learning D, the amount of time required by the network
to relearn D, to criterion is measured. The faster relearning occurs, the more
memory savings. But memory savings is only part of the story. Explicit recognition
of previously learned patterns without any relearning is also very important.
Consequently, this paper will focus not only on memory savings, but also on
explicit recognition measures. In short, if the system learns a set of patterns, D,
to criterion and then subsequently learns a new set, D,, to criterion, we need to
know the following: how much of D, is still explicitly recognized by the network
with no relearning of D,?

The reason for focusing on explicit recognition is the assumption that the
previously learned patterns are often no longer available. It is unrealistic to assume
that we will always be able to refresh our memories through re-presentation of old
patterns. It is not good enough for a creature that has to survive in a harsh
environment to be capable of rapidly relearning old associations, as long as they
are presented to it again. Old patterns must be able to be remembered without
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refresh from the environment. The pseudo-recurrent memory model presented
here will attempt to indicate one way in which this might be achieved.

We will conclude with a section on a number of challenges and unsolved
problems for this type of memory model.

8. Experiments

8.1. Experiment 1: The Necessiry of Interleaving Old Patterns (or Approximations of
Old Parterns) with New Information

In this simple experiment, we used a 12-item training set to train a standard 8-4-8
feedforward backpropagation network. The network had to autoassociate the
following twelve patterns:
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Once the network was completely trained to autoassociate these patterns, it was
then given the following two patterns to learn:

11110000—-00001111
00001111.-11110000

Learning these two pairs should have an extremely detrimental effect on the
previous learning. That is the intent. Perhaps, though, if the network were to learn
this new information very slowly, it would be able to incorporate the new patterns
into the previously learned information without disrupting it.

In an attempt to incorporate the two new patterns into the network without
disrupting the 12 previously learned patterns, various learning rates, ranging from
171 =0.01 to y =0.0001 with various values for the momentum term, ranging from
0.05 to 0.9, were tested. Once the network had learned the two new (disruptive)
patterns (often quite slowly because of the low learning rate), it was then tested on
how well it remembered the previously learned set of 12 associations. Retraining
on the original data was again done with a learning rate of 0.2 with momentum
0.9. Both the Ebbinghaus savings and the exact recognition of forgetting were
used. It took as long to relearn the original data after learning the two new patterns
as it had taken to learn it in the first place. Equally significantly, after learning the
two new associations, the network never recognized more than one of the original
patterns exactly (i.e. all outputs for a given input within 0.2, the convergence
criterion, of the output). And, over a total of 50 runs, the overall percentage of
exact recognition never exceeded 1%.

The point illustrated here is an important one—namely, regardless of how slowly
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a network learns new information, the previously learned information can nonethe-
less be overwritten. The key issue is not how slowly or quickly the network incorpo-
rates the new information, but rather how this new information is incorporated. As
can be seen in the present case, learning only two new patterns, even using a very
small rate of learning, can completely destroy all of the old information in the
network. As Robins (1995) has shown, and as we will show in the remainder of this
paper, by interleaving pseudopatterns along with the new information to be learned,
this type of catastrophic interference can be significantly reduced.

8.1.1. Discussion of experiment 1. McClelland er al. (1995) suggested that the
brain overcomes catastrophic interference by having evolved two separate areas for
information storage and processing: the hippocampus, where rapid learning of
new information occurs, and the neocortex, where the hippocampal learning is
consolidated by being trained very slowly by the hippocampus. Their idea is that,
because the neocortex is learning hippocampal information very slowly, this will
suffice to prevent catastrophic interference of the information previously stored in
the neocortex. The present experiment demonstrates that regardless of how slowly
new information is learned by a connectionist network, this information can destroy
previously learned information. We suggest that it is crucial that approximations
of the old information—pseudopatterns—be interleaved with the new information.

8.2. Experiment 2: Performance of a Pseudo-recurrent Network on a Real-world
Database

One of the objections of much of the work that has been done in the area of
catastrophic interference is that the patterns to be learned are tailored to produce
the desired phenomenon. For this experiment, we will consider data from the UCI
mushroom database (Murphy & Aha, 1992). The reason that it is important to
use real databases is that these presumably code for ‘real-world’ regularities. It can
be shown (McRae & Hetherington, 1993) that when a neural network is pretrained
on a random sample of data from the domain in which it will be operating,
catastrophic interference can be eliminated. This assumes, of course, that the
original random sample actually captures the regularities of the domain. When
new data from the same domain are then presented to the network there will be
little or no interference. This is because the new data will largely share the
regularities learned by the network during pretraining on the original random
sample. As a consequence, the new regularities will not interfere with the already-
learned ones.

But what happens if the new set to be learned does not share the regularities of
the patterns that the network was pretrained on? Qur own neural nets, for example,
have been pretrained on many instances of birds. We have, in short, learned many
regularities about birds. But, without difficulty, we can learn to recognize penguins,
which share very few of the previously learned ‘bird regularities’ but are still birds,
and bats, which share a great many bird regularities but are not birds. Here are
cases where pretraining would be of little use in preventing interference because
the regularities of the pretraining set would not be shared by the regularities of the
new information to be learned.

So, for our second experiment, we needed data that would cause significant
interference. For this, we selected two ‘quasi-contradictory’ sets of mushrooms
from the UCI mushroom database. Quasi-contradictory pairs of mushrooms are
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Figure 2. Ratio of the number of epochs required for relearning the original 20
patterns to the number of epochs initially required to learn these patterns (following
learning of the 20 disruptive patterns), as a function of the number of pseudopatterns.

those that differ on no more than three (of 22) attributes with one member of each
pair being poisonous, the other edible. There were approximately 70 such pairs of
closely paired edible/poisonous mushrooms in the UCI database. We picked 20
mushrooms for the original training set and 20 quasi-contradictory partners for
the second set to be learned. The original set contained 17 edible mushrooms and
three poisonous mushrooms. The second set of new mushrooms that closely
resembled those in the first set (the ‘contradictory data’) contained 17 poisonous
and three edible mushrooms.

For this experiment, each mushroom attribute was coded in a binary manner
and added to the input vector describing the mushroom. The system performed a
yes/no (poisonous/edible) classification task. The architecture of the pseudo-
recurrent network had 57 input nodes, 10 early-processing hidden units, 10 final-
storage hidden units, one early-processing output unit and one teacher unit (see
Figure 1 for the design of the overall architecture).

One of the important things to notice in this experiment using a larger network
is the fact that the information transfer using pseudopatterns must necessarily be
approximate, since the probability of actually reproducing any of the actual patterns
previously stored in final storage was, for all intents and purposes, zero.

Figures 2 and 3 show significant improvements on both depth-of-forgetting (as
measured by the time required to relearn the original data) and exact recognition
of items previously learned. In other words, the pseudo-recurrent network succeeds
in maintaining the memory trace of the previously learned patterns while learning
the new patterns. This should mean that true sequential learning of patterns,
characterized by gradual forgetting of old information, should be possible with this
type of network. Experiment 3 is designed to demonstrate the feasibility of
sequential learning with a pseudo-recurrent network.

8.2.1. Discussion of experiment 2. When the pseudo-recurrent network is used with
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Figure 3. The increase in the percentage of items of the originally learned set
exactly recognized by the network (after learning the set of disruptive items), as a
function of the number of pseudopatterns.

a database consisting of real-world patterns, in this case edible and poisonous
mushrooms, it is able to perform consistently better than standard backpropagation.
This improvement, measured both in terms of Ebbinghaus memory savings and
exact recognition of old patterns, increases with the number of pseudopatterns
mixed with the new data to be learned.

8.3. Experument 3: Sequential Learning

One of the most significant contributions of the pseudo-recurrent memory model
is its ability to learn data in a serial manner without experiencing severe interference
(Hetherington, 1991). In this experiment, the patterns were taken randomly from
the 1984 Congressional Voting Records database at the UCI repository. Twenty
members of Congress (10 Republicans and 10 Democrats, defined by their voting
record on 16 issues and their party afhiliation) were chosen randomly from the
database and were presented sequentially to the network. The order of presentation
was randomized in each run of the program and the results averaged over 50 runs.

After the 20 patterns were serially learned by the network, a test was made of
the percentage of these items that were exactly recognized (i.e. actual output within
the criterion of 0.2 of the desired output). Figure 4 shows that with standard
backpropagation this figure is around 40%, whereas it climbs rapidly to 65% with
the addition to each new pattern to be learned of only five pseudopatterns from
final storage. With 50 pseudopatterns added to each new item to be learned, exact
recognition of all patterns climbs to 85%.

After the network had serially learned the 20 items, each item was individually
tested to see how well the network remembered it. Figures 5 and 6 show that
forgetting in the pseudo-recurrent network is indeed more gradual than for standard
backpropagation. The standard backpropagation network is, on average, signifi-
cantly above the 0.2 convergence criterion for all of the previously learned items,
whereas the pseudo-recurrent network is at or below criterion for the last eight
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Figure 4. Percentage of all data exactly recalled by the network after serial
presentation of all 20 patterns (median data), as a function of the number of
pseudopatterns.
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Figure 5. Amount of error for each of the 20 items learned sequentially after the
final item has been learned to criterion (in this case, 0.2).

items learned (items 13-20) and within 0.05 of the criterion for items 7-12. By
contrast, for standard backpropagation, only items 18 and 19 are within 0.1 of the
0.2 exact recognition threshold. Finally, the amount of forgetting that takes place
between the final item that is learned and its immediate predecessors is considerably
greater in the standard backpropagation network than for pseudo-recurrent net-
works (see Table I).

8.3.1. Discussion of experiment 3. A very significant contribution of the pseudo-
recurrent memory model is its ability to learn patterns in a truly sequential manner.
This experiment shows that the forgetting curves for this type of network are
considerably more gradual (and therefore, cognitively plausible) than with standard
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Figure 6. Linear fitting of the error values for the first 19 items learned. Notice that

for standard backpropagation all 19 items are on average well above convergence

threshold. Between the 19th ahd final item there is considerable forgetting for

standard backpropagation. This|is not the case for the pseudo-recurrent network,
where forgettil’ng is considerably more gradual.

|

|
Table I. The differences in the amount
of error between the final item learned
and its immediate predecessor. Notice
that in standard backpropagation, this
difference is the largest (averaged over 50
runs for etch network), indicating the
considerable amount of forgetting of prior

items when learning each new item

Network ‘ Error
standard backpropagation 0.13
5 pseudopatterns 0.07
10 pseudopatterns 0.01
15 pseudopatterns 0.01
20 pseudopatterns 0.03
25 pseudopatterns 0.05
30 pseudopatterns 0.07
35 pseudopatterns —0.02
40 pseudopatterns 0.03
45 pseudopatterns 0.08
50 pseudopatterns 0.05
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backpropagation. This experiment also emphasizes the importance of interleaving
approximations of the already-learned patterns with the new patterns to be learned.

8.4. Experiment 4: The Automatic Emergence of Semi-distributed Representarions

French (1992) suggested the following basic relation between catastrophic forget-
ting and representations in a distributed system:

Catastrophic forgetting is a direct consequence of the overlap of distributed representa-
tions and can be reduced by reducing this overlap.

Purely local representations will not exhibit catastrophic forgetting because there is
little interaction among representations. Consider the extreme example of a look-up
table, in which representations do not overlap at all. There is no catastrophic forgetting:
when new information is added, the old information is completely preserved. However,
because of its entirely local representations, a look-up table lacks the all-important
ability to generalize.

At the other extreme are fully distributed networks where there is considerable
interaction among representations. This interaction is responsible for the networks’
ability to generalize. However, these networks can be severely affected by catastrophic
forgetting.

The moral of the story would seem to be that you can’t have it both ways. A system
that develops highly distributed representations will be able to generalize but will
suffer from catastrophic forgetting; conversely, a system that uses completely local
representations may not suffer from catastrophic forgetting, but it will have little or no
ability to generalize. The challenge is to develop systems capable of producing [semi-
distributed] representations that are local enough to reduce, if not entirely overcome,
catastrophic forgetting yet that remain sufficiently distributed to nonetheless allow
generalization.

In French (1992), a ‘node-sharpening’ algorithm was shown to decrease cata-
strophic interference by restricting the distribution of the network’s internal repre-
sentations as shown in Figure 7. A more powerful algorithm called ‘context-
biasing’ (French, 1994) produced similar modifications of the network’s internal
representations. In each case, representational overlap was diminished and cata-
strophic forgetting was significantly reduced. But these algorithms were, in both
cases, specifically designed to produce semi-distributed representations. On the
other hand, as can be seen in Figure 8, this type of semi-distributed representation
emerges automatically from the continual interaction between the early-processing
and the final-storage areas of the pseudo-recurrent architecture, rather than being
an artifact of a specifically tailored learning algorithm.

8.4.1. Data set used. These data were obtained from measurements of the original
cat and dog pictures used by Eimas er al. (1994) and by Mareschal and French
(1997) to study infant categorization. They included 18 dogs and 18 cats classified
according to head length, head width, eye separation, ear separation, ear length,
nose length, nose width, leg length vertical extent and horizontal extent.

8.4.2. Training procedure. A 10-30-10 auto-associator was used in learning these
two categories of animals. We compared the hidden unit representations in networks
that had sequentially learned six pairs of cats (i.e. a total of 12 cats) using differing
numbers of pseudopatterns. Subsequently, the network learned to auto-associate a
number of pairs of dogs (either one or two pairs). The network was then tested on
its ability to correctly auto-associate the previously learned cats.
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Figure 7. Semi-distributed internal representations of a category created by using
anode-sharpening algorithm (French, 1992) designed to reduce internal representa-
tional overlap and thereby to reduce catastrophic interference. The one-node and
two-node sharpened representations were particularly successful in reducing inter-
ference compared with the representations created by standard backpropagation.

8.4.3. Results. The semi-distributed representations that emerge from the pseudo-
recurrent network are shown in Figure 8. These representations are similar to the
semi-distributed representations in Figure 7 (French, 1992) that were generated
by an algorithm (node-sharpening) specifically designed to produce representations
of this type in order to reduce hidden-layer representational overlap and thereby
reduce catastrophic forgetting.

In this experiment, we trained the network to autoassociate on the training set
of cats. Various pseudo-recurrent networks were tested, varying the number of
pseudopatterns used in each case. As the number of pseudopatterns increases, the
network’s internal representation of the concept car undergoes the same type of
compaction observed with the node-sharpening algorithm. But here the important
difference is that there is no explicit algorithm designed to produce these representa-
tions. They arise naturally from the continual interaction of the two areas of the
memory.

It can be seen in Figure 9 that the pseudo-recurrent model did show consider-
ably less forgetting of the originally learned cats than standard backpropagation.
Moreover, the improvement was a function of the number of pseudopatterns used.

8.4.4. Discussion of experiment 4. The continual interaction between the two
processing areas of the pseudo-recurrent memory gives rise to more compact (i.e.
less distributed) internal representations. These are the same types of representa-
tions that have been shown in other work to reduce catastrophic interference. There
is, most importantly, no explicit mechanism generating these semi-distributed
representations; they emerge naturally from the architecture.

This suggests an interesting possibility for the human brain. It has been shown
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Figure 8. Here we see the same kind of decrease in the distributedness of the

representation of a particular category (in this case, cat) as we saw when a much

more ‘artificial’ algorithm (node-sharpening; French, 1992) was used. The greater
the number of pseudopatterns, the more compact the representation becomes.

that there is continual interaction between the hippocampus and the neocortex
and that this interaction is almost certainly involved in long-term memory consoli-
dation. If this interaction is indeed mediated by pseudopatterns, as suggested by
Robins (1996), then it would not be unreasonable to think that the representational
compaction observed in the pseudo-recurrent model might also occur in the brain.
Compact representations would, presumably, allow for more efficient processing
of incoming stimuli. On the other hand, the more compact nature of these
representations would make new category distinctions more difficult and also lead
to the category brittleness that occurs as people grow older. Finally, highly compact
representations would presumably be more vulnerable to physical damage than
highly distributed representations. This, too, would seem to be consistent with
selective memory loss with aging (French, 1997).
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Figure 9. The improvement in the recognition of the previously learned cats after
interference by either two or four dogs. The amount of forgetting is measured by
the average error of the auto-association.

8.5. Experiment S: List-strength and List-length Effects

This model is able to reproduce the standard list-length effect (Atkinson & Joula,
1973; Gillund & Shiffrin, 1984; Ratcliff & Murdock, 1976; Strong, 1912) and the
list-strength effect reported in Murnane and Shiffrin (1991), Ratcliff er al. (1990)
and Shiffrin er al. (1990).

The list-length effect means simply that adding new items to a list harms
memory of earlier list items. For the pseudo-recurrent model, this easily falls out
of the manner in which serial learning is done. The further back in a list an item
occurs, the more poorly it is remembered (see Figures 5 and 6). Thus, when more
items are added to a serial list, the less chance the earlier ones have of being
remembered. While this is true, of course, of standard backpropagation models, as
can be seen in Figures 5 and 6, beyond one or two items back, all items have
basically been forgotten. The pseudo-recurrent network’s ability to forget gradually
allows it to show a plausible list-length effect.

The list-strength effect for recognition means that when the strength of an item
is increased, there is no effect on the recognition of the other items. In other words,
increasing the strength of a particular item in a list (usually, by repeating it) will
have no effect on recognition performance of the other items. However, many
current memory models predict the opposite—namely, that when certain items are
strengthened, recognition performance on the other (unstrengthened) items will
decrease (Murnane & Shiffrin, 1991).

To examine list-strength performance of the pseudo-recurrent network, we
repeated the 4th element in the list, putting it in the 8th, 12th and 16th position.
As expected, this repetition did indeed strengthen the item in terms of its ease of
recognition by the network. The decrease in average error when an item was
strengthened (i.e. repeated) compared with the corresponding unstrengthened item
is significant (two-tailed, paired 7(10) =5.71, P < 0.001).

Figure 10 compares the typical performance of two pseudo-recurrent networks
each using 30 pseudopatterns. In one case, item 4 had been repeated four times,
while in the other case, no item was repeated. The error curves, which are a
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Figure 10. No significant difference between errors for the non-strengthened
items in the condition where item 4 occurred four times and the corresponding
items in the condition where no items were repeated.

measure of recognition competence—the smaller the error, the better the recogni-
tion—for the non-strengthened items do not differ significantly. This would appear
to be in qualitative agreement with the list-strength effect for item recognition.

8.5.1. Discussion of experiment 5. The pseudo-recurrent network would seem to
be able to exhibit not only a traditional list-length effect in which adding additional
items decreases recognition of the other items, but also a list-length effect for
recognition in which strengthening several items of a list (by repetition) does not
adversely affect the network’s performance on the other items.

8.6. Experiment 6: Using Pseudoparterns to Transfer Information in Both Directions
Berween the Early-processing Mewmory and Final-storage Memory

Does the pseudo-recurrent memory model always require identical numbers of
hidden nodes in the early-processing memory and in the final-storage memory? As
presented in this paper, the answer is yes. But it is not difficult to modify the model
so that information is transferred both from final storage to the early-processing
memory as well as from the early-processing memory to final storage by means of
pseudopatterns. The advantage of directly copying the contents of the early-
processing memory to final storage is, of course, that there is no loss of information.
The disadvantage is that the number of early-processing and final-storage hidden
units must be identical and that the idea of copying weights directly from the early-
processing memory to the final-storage memory lacks psychological plausibility.

8.6.1. Modified architecture. Insted of copying the weights from the earlyprocessing
storage to the final storage, the contents of the early-processing memory are
transferred to final storage by means of pseudopatterns. In other words, once the
new data (along with the pseudopatterns from final storage) have been learned to
criterion in the early-processing memory, the early-processing memory generates a
number of pseudopatterns that are then learned by the final-storage memory. The
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Figure 11. Decreased forgetting of the original data with respect to standard
backpropagation (measured in number of epochs required for complete relearning).

output nodes of the early-processing memory then become the teacher nodes for
the final-storage memory.

8.6.2. Dara set used. The data were the same two ‘quasi-contradictory’ sets from
the UCI mushroom database that were used in Experiment 2.

8.6.3. Training procedure. The final storage memory independently learned the
first set of 20 mushrooms. As in experiment 2, this was done to simulate ‘back-
ground knowledge’ in final storage. Then the 20 new quasi-contradictory patterns
were presented to the system for learning. A total of 40 pseudopatterns from the
final-storage memory were added to the new set of mushrooms to be learned.
Once these were learned in the early-processing memory, instead of copying the
early-processing weights as before, the information was transferred to final storage
by a set of 40 pseudopatterns generated by the early-processing memory and
learned by final storage. The final-storage memory was then tested to determine:

e how long it took to relearn the original background patterns (in epochs);
e what percentage of the original patterns were exactly recognized.

These figures were compared with the same measurements for a standard back-
propagation network (with the same architecture as the final-storage area of the
pseudo-recurrent network) that had first learned the background set of patterns
and then learned the new quasi-contradictory set of mushrooms.

8.6.4. Results. Both the Ebbinghaus-savings measure and the exact-recognition
measure were used to measure forgetting. Figure 11 shows the number of epochs
required to relearn the original data for the pseudo-recurrent network compared
to the number of epochs required by a standard backpropagation network after
each had learned the new data. There was a decrease from an average of 88 epochs
to 43 (averaged over 30 runs), an improvement of over 50%. Figure 12 shows the
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Figure 12. Improved recognition of the original data with respect to standard
backpropagation (measured in per cent of the originally learned patterns that were
exactly recognized after the new patterns had been learned).

corresponding improvement in exact recognition of the originally learned items for
the pseudo-recurrent network compared with the backpropagation network.

By varying the number of pseudopatterns used to transfer information in each
direction, it was found that the amount of information transferred from one
memory to another could be varied. Can the number of pseudopatterns in both
directions be set very high to always ensure maximal information transfer? One
problem with doing this is convergence times. The more pseudopatterns that need
to be learned, the longer it takes the network to converge. If there are too many
pseudopatterns added, convergence may take an extremely long time and, in some
cases, may not even occur at all.

8.6.5. Discussion of experiment 6. It is also possible to transfer information from
the early-processing memory to the final-storage memory using pseudopatterns,
instead of copying the early-processing weights to final storage. Although this
technique is not explored in depth in this paper, it did significantly reduce
interference with previously learned information, in addition to providing a more
plausible transfer mechanism from the early-processing memory to final storage.

9. ‘Catastrophic Remembering’: A Theoretical Limitation of Pseudo-
recurrent Networks

In the experiments described here, we have attempted to highlight some of the
features that make the pseudo-recurrent network a plausible memory model. But
like all models, there are certain things that it can do better than others. One
particular problem that this model cannot overcome is, ironically, the flip-side of
catastrophic forgetting, what Sharkey and Sharkey (1995) have called ‘catastrophic
remembering’. The idea is quite simple: assume a network (e.g. 9-9-1) has a
training set of, say,

111000000 —1
000111000 —1
000000111 =1
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where ‘1’ represents ‘have seen it’. It will almost certainly learn these patterns very
quickly by producing a very large weight from one of the hidden units to the output
unit. The problem is that now any new pattern presented to the network will be
(‘catastrophically’) remembered as having been seen as well.

One possible approach to this problem would be to use an auto-associator
network. Instead of having the network learn the associations 111000000 — 1, etc.,
the pattern 111000000 would be auto-associated. Subsequently, if a new pattern
was presented to the network, its input and corresponding output would be
compared. If they were very close, the network would conclude that it had seen
the pattern previously (only then producing the desired 1 on output); otherwise if
the difference were too great it would conclude that it had not previously encoun-
tered the data (and only then produce a 0 on output).

However, as Sharkey and Sharkey (1995) point out, there is a problem with
this technique: it only works if the number of auto-associations to be learned
remains relatively low and the network is, in essence, still memorizing individual
auto-associated exemplars. However, as soon as the number of auto-associated
patterns becomes high enough for the network to effectively learn the identity
function, the problem of catastrophic remembering returns with a vengeance. The
network, having learned to produce on output what it received on input, will then
‘remember’ any pattern, whether or not it has been seen before. The pseudo-
recurrent architecture would be of little help in this situation. The problem, as
Sharkey and Sharkey (1995) point out, is that the ability to generalize to the
identity function will necessarily mean that there will be a loss of discrimination,
So, for this particular task, for a pseudo-recurrent network or for a standard
packpropagation network, it would seem that one can have good generalization or
good discrimination, but not both.

Another solution might be to have input that has actually been seen to be
associated with a ‘have seen’ pattern (for example 1), while a number of internally
generated random patterns would be associated with a ‘have not seen’ pattern (for
example, 0). So, for example, in addition to the three ‘real’ patterns, the network
would automatically also learn a number of internally generated random input
patterns—say, 100101101, 001011010, etc.—that would all be associated with 0,
thus providing a ‘background’ against which the real patterns would stand out. If
the input space was large enough, the probability of accidentally selecting a random
pattern that was one of the actually seen patterns would be vanishingly small.

In any event, the problem raised by Sharkey and Sharkey (1995) is an important
one and one for which the current pseudo-recurrent memory model has no
immediate answer. Further research on this model will need to address this issue.

10. General Discussion

This paper addresses an important concern about the consolidation of information
in long-term memory. It has been shown by a number of authors that many of the
current connectionist models of memory suffer from catastrophic forgetting. In
order to avoid this problem, connectionist networks in general, and backpropag-
ation networks in particular, must be trained in a highly implausible manner.
When new patterns must be incorporated into an already-trained network, all the
previously learned patterns must be available and must be re-presented to the
network along with the new patterns to be learned. If this is not done, the previously
learned patterns may be overwritten completely by the new patterns, resulting in
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catastrophic forgetting of the old patterns. It is unrealistic to suppose that we can
continually refresh long-term memory with previously learned patterns. In many
instances, these patterns simply are not available or, if they are available, they are
only encountered very occasionally. (Think about how long it’s been since you last
saw a live giraffe, and yet, you would still recognize a giraffe without a moment’s
hesitation.) And yet, in spite of this lack of memory refresh from actual instances
in the world, we are able to maintain memory traces of these instances, or at least,
prototypes of them. The long and the short of the problem is that we humans can
do sequential learning; connectionist models cannot. And, unless the problem of
catastrophic forgetting in connectionist models is overcome, true sequential learning
will remain impossible.

It is also generally acknowledged that one of the main contributing factors
to catastrophic interference is the overlapping nature of the network’s internal
representations. Decreasing representational overlap results in a decrease in cata-
strophic forgetting. This fact led McClelland ez al. (1995) to suggest that the way
the brain overcomes catastrophic interference was by having separate processing
areas, the hippocampus and the neocortex. They suggested that new information
arrives at the hippocampus and is learned there first, away from previously learned
information, before being consolidated in the neocortex. Neocortical consolidation
is done by the hippocampus slowly training the neocortex.

While I believe that this picture is basically right, a key element is missing. It is
not enough, as I hope to have shown in experiment 1, to have the hippocampus
train the neocortex, however slowly. Catastrophic interference with previously
learned information can still result. The unavoidable conclusion is that previously
learned information—or, at the very least, approximations of the previously learned
information—must somehow be continually interleaved with the new information.
This fact is the basis of the pseudo-recurrent model of memory. This mode]
consists of two continually interacting subsystems, one continually providing
approximations of the previously learned information (pseudopatterns) to be
interleaved with the newly arriving patterns learned by the other.

Robins (1995) has demonstrated the effectiveness of pseudorehearsal (i.e. the
use of pseudopatterns) in reducing catastrophic interference in a single network.
In the present paper, however, a two-part model of memory is developed that
makes use of this mechanism as a means of continually transferring informaton
from one part of the memory to the other. The idea is not to demonstrate that
pseudopatterns work, but rather to incorporate them into a memory model that
has certain parallels in the neurobiological literature, in particular, with McClelland
et al. (1995). The key feature that sets this model apart from other models and
from the earlier work on pseudopatterns is its use of two distinct areas that are in
continual interaction by means of pseudopatterns. The work by McClelland et al.
strongly suggests a two-part architecture as the means by which the brain overcomes
the problem of catastrophic interference. The proposed pseudo-recurrent model,
especially the version described in experiment 6 where pseudopatterns are used to
pass information back and forth from both subsystems, is at least one two-part
architecture that does effectively overcome catastrophic interference.

Experiment 2 uses a real-world database to establish that the pseudo-recurrent
network succeeds in significantly reducing interference. Since, in the catastrophic-
forgetting literature, two measures of forgetting are frequently used, an Ebbinghaus-
like savings measure and a measure of percentage of explicit recognition of
previously learned items, we demonstrate in this experiment that, for both of these
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measures, interference from newly learned patterns is significantly reduced in the
pseudo-recurrent memory model.

In experiment 3, it is shown that this model actually does succeed in doing
sequential learning, producing a psychologically realistic pattern of gradual forget-
ting of the previously learned items.

Experiment 4 demonstrates a somewhat unexpected phenomenon—namely,
that the pseudo-recurrent architecture automatically evolves compact (i.e. semi-
distributed) internal representations. In previous work on catastrophic forgetting
(French, 1992, 1994; Murre, 1992) these are exactly the type of representations
that has been suggested were needed to reduce representational overlap, thereby
reducing the interference that led to severe forgetting. That these representations
arise naturally from this architecture has a number of possible implications for
subsequent work. If, in fact, the brain has some architectural resemblance to the
pseudo-recurrent memory model, then it, too, might over time be expected to
evolve the compact internal representations that are observed in the pseudo-
recurrent network. This could help to shed light on the phenomenon of age-related
categorical brittleness without requiring, for example, an appeal to mechanisms of
neural pruning that have been suggested elsewhere (see, for example, Edelman,
1987). In addition, the more compact representations would tend to exhibit a
greater sensitivity to damage, which might help to explain certain memory losses
that accompany senescence.

Experiment 5 shows that this model, unlike standard backpropagation models,
exhibits a plausible list-length effect. This is a direct consequence of its being able
to do sequential learning in a reasonable manner, i.e. in a way that produces
gradual forgetting. The list-length effect says that as the length of a list of items to
be learned gets longer, earlier items are forgotten. While this is certainly true of
standard backpropagation, it is true in a somewhat trivial sense. As Figure 5 shows,
beyond one or two items, a backpropagation network has largely forgotten all the
previously learned items. On the other hand, the gradual forgetting that occurs in
the pseudo-recurrent networks produces a more cognitively plausible list-length
effect. In addition, this network (as well as standard backpropagation) exhibits a
list-strength effect, which is to say, that strengthening certain items by repetition
not only makes these repeated items easier to recognize, but, in addition, does not
affect the network’s ability to recognize the other non-repeated items.

One of the criticisms of the pseudo-recurrent architecture as shown in Figure
1 is that the mechanism of copying the weights from the early-processing subnet-
work to the final-storage subnetwork lacks plausibility. In particular, this constraint
also means that both subnetworks have to have identical sizes and connection
topologies. In the final experiment, then, this constraint is relaxed and information
is transferred from one subnetwork to the other exclusively by means of pseudo-
patterns. Both the Ebbinghaus savings measure and the exact recognition measure
of forgetting were used to demonstrate that catastrophic forgetting is significantly
reduced in this type of network, just as it is in the original system that relies on
weight-copying. In other words, the weight-copying mechamism, while certainly
more efficient than transferring information by pseudopatterns, is not a necessary
feature of the pseudo-recurrent memory model. This is important because it is
clearly more difficult to justify weight-copying in a cognitive model than the transfer
of information using the pseudopattern mechanism described in this paper.

There are, of course, many other unresolved issues that the pseudo-recurrent
memory model would ultimately have to address. In particular, both the early-
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processing and the final-storage areas of the model should undoubtedly be recurrent
networks of some kind—for example, simple recurrent networks (Elman, 1990).
Further, no attempt was made here to model the effect of arousal on memory
consolidation (Chown, 1994). In the current model, everything learned in the
early-processing area is uniformly transferred to the final-storage area. Finally, the
model should probably also include some sort of discriminator mechanisms in
order to deal with the problem of catastrophic remembering (Sharkey & Sharkey,
1995). While these issues exceed the scope of the present paper, they will be
explored in the future.

In conclusion, this paper describes a memory model that provides a possible
solution to the sensitivity—stability problem, and the directly related problem of
sequential learning, that makes use of separate, but continuously interacting areas
to store already-learned and newly-learned patterns (McClelland ez al., 1995). The
reasons for my belief in the necessity of this separation are tied to previous work
on catastrophic forgetting. The proposed pseudo-recurrent memory model also
makes the key assumption that previously learned patterns will be unavailable for
re-presentation to the network. I hope to have demonstrated that the pseudo-
recurrent model can not only achieve effective sequential learning, but that the
continual exchange of information between the two areas of the memory naturally
gives rise to ‘compact’ representations of the patterns learned, with the advantages
(and problems) that this entails. Further research will show whether there are
neural correlates to the development of this kind of semi-distributed representation.
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