
Implicit learning is usually defined as the process by 
which people learn without intent and without being able 
to clearly articulate what they are learning (for reviews, 
see Perruchet & Pacton, 2006; Shanks, 2005). The grow-
ing interest in implicit learning stems from its crucial role 
in the acquisition of one’s mother language and in the de-
velopment of other cognitive, social, and motor abilities. 
Another attractive feature of implicit learning is that it 
has proven to be relatively insensitive to age (e.g., Curran, 
1997; D. V. Howard & J. H. Howard, 1989; Kotchoubey, 
Haisst, Daum, Schugens, & Birbaumer, 2000) and is pre-
served in a number of neuropsychological disorders (e.g., 
McDowall & Martin, 1996; Smith, Siegert, McDowall, & 
Abernethy, 2001; Stevens et al., 2002; Zillmer & Spiers, 
2001). As a consequence, the phenomenon is a focus of in-
vestigation not only for laboratory researchers, but also for 
those oriented toward educational or clinical objectives.

Although several tasks have been used to investigate 
implicit learning (e.g., the artificial grammar learning 
task proposed by Reber, 1967, and the dynamic control 
task used by Berry & Broadbent, 1984), motor sequence-
 learning tasks are increasingly popular. In the most typi-
cal paradigm, coined the serial reaction time (SRT; Nis-
sen & Bullemer, 1987) task, a target stimulus appears on 
successive trials at one of a limited number of positions. 
Participants are asked to react to the appearance of the 
target by pressing a key that spatially matches the loca-
tion of the target on a keyboard. Unknown to participants, 
the sequence of events is not random. It usually consists 
of the continuous cycling of the same sequence. Learning 

is attested by the fact that reaction times (RTs) progres-
sively decrease with practice of the repeated sequence 
and suddenly increase when a random sequence is un-
expectedly inserted. This indicates that participants have 
acquired knowledge about the structured nature of the re-
peated sequence. However, even if it has been shown that 
participants demonstrate sequence learning, the debate 
about the nature of the acquired knowledge—implicit ver-
sus explicit—remains open. Consequently, various tests 
of awareness have been proposed for evaluating explicit 
and implicit sequence knowledge. First, Perruchet and 
Amorim (1992) developed a recognition task in which 
participants are presented some short sequences and have 
to discriminate between the sequences that follow the 
learned structure and the sequences that violate it. Subse-
quent studies have established that participants are able to 
recognize and discriminate correct sequences (Perruchet, 
Bigand, & Benoit-Gonin, 1997; Shanks, 2003; Shanks, 
Wilkinson, & Channon, 2003). Second, other researchers 
have proposed various generation tasks in which partici-
pants have to reproduce either the whole learned sequence 
or some fragments of it. In the case of the free genera-
tion task (Destrebecqz & Cleeremans, 2001; Perruchet & 
Amorim, 1992; Shanks & Johnstone, 1999), participants 
have to freely generate a sequence that is as similar as 
possible to the sequence learned during the training phase. 
This implies that participants have to remember a sub-
stantial amount of the structure of this learned sequence. 
On the contrary, in a cued generation task (Willingham, 
Nissen, & Bullemer, 1989), participants are presented ele-
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submillisecond accuracy (more detailed explanations are 
given in the section dealing with records of RTs).

The purpose of the present article is to help research-
ers address all of these difficulties. We propose flexible, 
easy-to-use software and some guidelines for using it in 
accordance with up-to-date methodological principles.

OveRview Of GSRT-Soft

gSRT-Soft is a user-friendly application that makes it 
very easy to run classical SRT experiments, but is flexible 
enough to permit a broad range of nonstandard manipula-
tions for more specific objectives. By default, the software 
has been designed to allow a straightforward and time-
saving implementation of the most popular paradigms 
(e.g., a four-choice SRT task, with participants’ responses 
being entered on the computer keyboard). Thus, it can be 
used, for instance, by a neuropsychologist wishing only 
to add a standard SRT task to a large-scale test battery of 
cognitive functions. However, it also integrates a number 
of features that enable users to implement nonstandard sit-
uations. For instance, the targets can be arranged in order 
to draw a labyrinth that covers all the bidimensional space 
of the screen, and a computer mouse or graphic tablet can 
be used as a manipulandum instead of the keyboard.

gSRT-Soft was developed in C11, which was chosen 
because it is a general-purpose programming language 
with high-level and low-level capabilities. The high-level 
capabilities allow easy development of large pieces of 
software, whereas the low-level capabilities allow the 
programmer to manage real-time aspects of the software, 
such as high-resolution measures of RTs.

The software is a Windows-based program using menus, 
buttons, and selection boxes accessible with a mouse. It 
includes two main menus—Configuration and Partici-
pant. Configuration determines the general parameters 
for a given experiment, which need to be set before the 
Participant menu can be accessed. First, the Configuration 
menu allows either the generation of a new configuration, 
the loading of an existing configuration stored on a file, 
or the saving of the current configuration to a file. These 
files are standard INI files frequently used for Microsoft 
Windows-based applications. In the second menu, the New 
Participant menu specifies the particular values used for 
each participant of a previously configured experiment.

Configuration
Figure 1 shows the available possibilities in the Con-

figuration dialog box. The main choice concerns whether 
participants’ responses are made on the keyboard or with 
a mouse. As anywhere else in the program, the user indi-
cates his or her choice by clicking the appropriate radio 
button. When the keyboard option (default) is selected, 
two suboptions follow. Because an overwhelming propor-
tion of SRT studies involve the same stimulus–response 
pattern (namely, four target locations and four spatially 
congruent response keys), this configuration is proposed 
as a default (the researcher can choose either the Euro-
pean AZERTY or the U.S. QWERTY keyboard). How-
ever, the configuration can be customized with regard to 

ments of the sequences and are instructed to press the but-
ton corresponding to where they think the next stimulus 
will appear. The stimulus remains present until the par-
ticipant makes the correct response. A variation of this 
procedure is the trial-by-trial sequence generation task 
proposed by Wilkinson and Shanks (2004). Participants 
observe a short, five-element sequence of targets from the 
training sequence and then have to produce a single gener-
ation response corresponding to the correct continuation 
response. Norman, Price, Duff, and Mentzoni (2007) have 
proposed a novel generation task, the generation rotation 
task. This task is a modification of the existing trial-by-
trial generation task, but with the addition of a randomly 
varying contextual cue. According to Norman et al., this 
task provides a more robust measure of explicit sequence 
knowledge.

Several reasons explain the success of the SRT para-
digm. There is no doubt that sequential behavior is in-
volved in virtually any world-wide ability, from language 
to the organization of movements, thus ensuring a good 
ecological validity to sequential tasks. The use of a visual–
motor implementation makes a quantitative assessment of 
learning easy to get, and robust learning has proven to be 
possible within a short time in a large variety of popula-
tions, from children (Vinter & Perruchet, 2000) to elderly 
people (J. H. Howard & D. V. Howard, 1997). Another ad-
vantage of the SRT task over some other tasks of implicit 
learning is that participants are in truly incidental condi-
tions of learning, because the effect of regularities can 
be assessed without participants having been informed 
about the presence of hidden regularities (Cleeremans, 
1993; Destrebecqz & Cleeremans, 2001). Finally, it has 
been shown that the reliability of SRT tasks is pretty good 
in comparison with other tasks of implicit learning (Salt-
house, McGuthry, & Hambrick, 1999). This property is 
essential when the aim of the researcher is to compare the 
learning abilities of different samples of participants and, 
moreover, when the residual learning abilities of patients 
need to be assessed on an individual basis.

A potential difficulty in the development of dedi-
cated SRT task software is the large number of to-be-
 implemented procedures that are becoming increasingly 
complex. Indeed, since the initial study by Nissen and 
Bullemer (1987), SRT tasks have been the object of a large 
number of investigations that have led to both the emer-
gence of a number of variants and the growing sophisti-
cation of methodological controls (e.g., Bischoff-Grethe, 
Goedert, Willingham, & Grafton, 2004; Chambaron, Gin-
hac, & Perruchet, 2006; Curran & Keele, 1993; Osman, 
Bird, & Heyes, 2005; Perruchet et al., 1997; Ziessler & 
Nattkemper, 2001).

Another possible obstacle against a still larger extension 
of SRT tasks, however, is the increasing difficulty of their 
implementation. SRT tasks require accurate time measure-
ments, and this has been shown to be problematic in a mul-
titask environment, such as Microsoft Windows. It has been 
recommended to use MS-DOS only, in which millisecond 
accuracy is possible (Myors, 1999). However, modern op-
erating systems, such as Microsoft Windows XP, offer so-
phisticated mechanisms for recording time measures with 
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allows the exploration of learning of much richer statisti-
cal regularities.

The use of a computer mouse is essentially aimed at 
overcoming the practical constraints linked to the use of 
a computer keyboard. The number of events is no longer 
limited, except by the spatial constraints linked to the posi-
tioning of the targets on a computer screen. In gSRT-Soft, 
the targets can be disposed either in a matrix (X rows and 
Y columns, maximum) or along a circle (X targets, maxi-
mum). The maximum values for rows and columns in a 
matrix layout or in a circle layout are dependent on screen 
resolution and target size. For example, with a standard 
XGA resolution (1,024 3 768 pixels) and a 100-pixel 
target size, the maximum number of rows is six and the 
maximum number of columns is nine. In the case of a 
circle layout, the maximum number of targets is 12. These 
maximum values are automatically evaluated in order to 
avoid an overlap between two consecutive locations on 
the screen.

Three different configurations (standard 4-position, 3 3 
4 matrix, and 12-position circle) are depicted in Figure 2.

Note that with a matrix pattern, the sequence can be 
ordered in such a way that the target draws a labyrinth 
on the screen. A legitimate question, however, may be 
whether using a mouse recruits the same learning process 
as when keypressing is involved. To address this question, 

which keys match which target. The selection of the keys 
may serve several objectives. For instance, in most stud-
ies, there is a direct mapping between the location of the 
target on the screen and the spatial arrangement of the 
keys on the keyboard. Whether stimulus–response map-
ping is direct or not, however, has proven to be influential 
in a large number of motor control studies (e.g., Deroost 
& Soetens, 2006; Stöcker, Sebald, & Hoffmann, 2003). 
This software allows the exploration of the effect of this 
variable in SRT studies. It is possible, for instance, to pair 
the leftmost target with the rightmost key, or to design any 
other stimulus–response pairings.

During keyboard configuration, changing the number 
of keys is also possible, although this option may turn 
out to have limited utility. This is not because the nearly 
ubiquitous use of four target locations would be rooted 
in a principled advantage of this specific configuration; 
rather, it is due to the fact that using more than four keys 
causes a considerable slowing down of the responses and/
or a dramatic increase in the error rate, for obvious rea-
sons (for the use of six keys, see, e.g., Cleeremans, 1995; 
Heyes & Foster, 2002; Jiménez, Méndez, & Cleeremans, 
1996). Limiting the number of possible events to four (or 
even six) can be damaging, restricting the ecological va-
lidity of the SRT task in a skill-learning context. Also, a 
sequence involving a larger number of different events 

figure 1. The New Configuration dialog box.

figure 2. Different configurations for the targets.
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designs individual, different blocks that vary randomly 
between participants, for example, the researcher must 
create one stimuli input file for each participant, and must 
include every block of stimuli in the desired order.

The stimuli input file must include a list of target loca-
tions. In the file, there is only one stimulus per line. The 
separator of the stimuli is the end-of-line (EOL) character. 
Instead of a stimulus, a line may include a “P” character, 
which indicates the presence of a self-paced pause. For 
instance, when the software reads the following 10 lines:

1
2
3
4
P
1
2
3
4
P

it generates two sequences, in which the target moves from 
the left to the right, and the two sequences are separated 
by a pause.

Moreover, concerning the recognition test, participants 
are classically presented with small sequence fragments 
and are asked to classify them as instances of the training 
material or not. In this case, the “R” character is inserted 
in the stimuli input file between each sequence to be rec-
ognized. The user decides the number of sequences to be 
recognized and the order in which these sequences are to 
be presented to the participants. In other words, the user 
has to prepare the set of sequences in the stimuli input file 
in such a way that “old” versus “new” sequences appear in 
a specific order. For instance, if we consider the sequence 
1–2–3–4 to be the training sequence (i.e., old sequence), 
then the stimuli input file that reads as follows:

we (Chambaron et al., 2006) have borrowed the design of 
a prior SRT study (Shanks, 2003), using either a keyboard 
or a mouse, as a function of participants. Although the 
mean RT was significantly larger with a mouse, evidence 
of learning was observed in both conditions, with no sig-
nificant difference in the amount of learning. This result 
suggests that using a mouse may represent a promising 
alternative to the use of the keyboard whenever the re-
searcher wishes to include more than a very few different 
targets in the trained sequence.

Finally, the size of the target needs to be defined. The 
default value is 100 pixels. However, the target can be re-
duced (to 1 pixel!) if the researcher wishes to degrade the 
perceptual discrimination of the stimuli—a procedure that 
may strengthen the role of location anticipation. Note that 
with the mouse option, a small target also increases motor 
accuracy constraints. The size of the target can also be 
increased when the opposite objectives are aimed. For ob-
vious reasons, the maximum size depends on the number 
of targets and on their spatial configuration. When an il-
legal (i.e., too large) value is entered, the program returns 
an error message indicating the maximum value allowed, 
given the specific configuration.

By default, the possible locations of the targets are 
marked on the screen throughout the session by empty boxes 
in which the targets appear. However, an option can be se-
lected in the Configuration menu, preventing these boxes 
from being displayed on the screen throughout the session.

New Participant
After the configuration is complete, clicking on the 

New Participant element menu opens the window dis-
played in Figure 3. The first choice concerns the task to 
be run. The label “SRT task” designates the main training 
task. This task may be followed by a recognition task. The 
general organization is the same for the two tasks.

The training sequences that a researcher may wish to 
explore may differ along a virtually unlimited number of 
features. They may be composed from the repetition of a 
sequence, but they also may be generated by a finite-state 
grammar (e.g., Cleeremans & McClelland, 1991) or other 
set of rules. They may be deterministic or probabilistic 
(see below), and they may differ in length and in a num-
ber of other parameters. This boundless variety makes it 
unmanageable to elaborate the sequence through an in-
teractive set of options. The problem has been solved in 
gSRT-Soft by dissociating the generation of the sequence 
from the main program, with the consequence that the 
program reads only a previously prepared sequence of tri-
als stored in the stimuli input file. A few typical sequences 
are included in the package (available on request). In most 
other cases, a standard spreadsheet, such as Microsoft 
Excel, prepares a set of original data quite well. For more 
sophisticated objectives, the researcher may use his or her 
preferred programming language, provided the resulting 
values are stored as a text file. In the case of a repetition of 
a sequence, the researcher only needs to generate a single 
text file that includes all the successive positions of the 
target. This text file will be used for all of the partici-
pants in the experiment. On the contrary, if the researcher 

figure 3. The New Participant dialog box.
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There is no delay between Locations 1 and 2, nor between 
Locations 3 and 4, but there is a 500-msec interval be-
tween Locations 2 and 3.

Another important parameter in gSRT-Soft is the pos-
sibility of displaying any bitmap image on the screen as 
a target stimulus. Some basic bitmap files are distributed 
with the package, including geometric shapes (circle, 
square, triangle) in various colors (blue, yellow, red, black, 
etc.). However, any bitmap file can be used as a target. 
The image is automatically resized in order to be correctly 
displayed in the boxes on the screen. In the same manner 
as with the RSI value, it is possible to choose either a con-
stant picture for all the stimuli or a variable picture associ-
ated to each stimulus. Consider the following example:

1 grey_circle.bmp
2 black_circle.bmp
3 yellow_circle.bmp
4 blue_circle.bmp
P
1 grey_triangle.bmp
2 black_triangle.bmp
3 yellow_triangle.bmp
4 blue_triangle.bmp
P

In the first sequence 1–2–3–4, a circle of different colors 
(grey, black, yellow, blue) is used, whereas in the second 
sequence, a triangle is displayed.

This option is innovative, making gSRT-Soft flexible 
enough to allow the programming of novel SRT proce-
dures. We can imagine realizing SRT tasks with sequences 
of letters, words, or pictures. Such a possibility is used in 
the serial naming task developed by Goschke and Bolte 
(2007) in order to investigate implicit learning of repeated 
sequences of abstract semantic categories. In this task, 
participants have to name pictures of objects displayed on 
a screen (e.g., table, shirt, etc.). Unknown to the partici-
pants, the semantic categories of the objects (e.g., furni-
ture, clothing) follow a repeating sequence.

For obvious reasons, we envision generating some se-
quences based on variable RSI values and variable target 
images. In such a case, the stimuli input file must be writ-
ten in the manner of the following:

1 0 grey_circle.bmp
2 500 black_circle.bmp
3 0 yellow_circle.bmp
4 0 blue_circle.bmp
P
1 0 grey_triangle.bmp
2 500 black_triangle.bmp
3 0 yellow_triangle.bmp
4 0 blue_triangle.bmp
P

However, the present release of gSRT-Soft does not allow 
the display of multiple stimulus displays at the same time, 
as was seen in the procedure used by Norman et al. (2007). 
In their experiments, the four possible target positions were 
indicated by four shape outlines (heart, circle, square, cross) 
colored red, green, or blue on a white background. On each 

1
2
3
4
R
2
1
3
4
R
4
2
3
1
R
1
2
3
4
R

presents four sequences to be recognized in the following 
order: old, new, new, old. For simplicity, a two-alternative 
scale has been chosen in gSRT-Soft with default values for 
the question Do you recognize this sequence? and the two 
possible answers ( yes, no). These default values can be 
modified by the user in the INI file. At present, gSRT-Soft 
does not allow recognition tasks based on gradual scales—
for example, from 0 (highly unfamiliar sequence) to 10 
(highly familiar sequence). Future releases may include 
such an option if this is requested.

The stimuli input file may be the same for all of the par-
ticipants of a given experiment (note that by default, the 
program displays the path and the name of the last file that 
has been loaded, so this information does not need to be 
typed for each participant). However, in many cases, the 
stimuli input file differs from participant to participant, 
generally at the end of counterbalancing or randomizing.

An important parameter in the SRT task is the 
response– stimulus interval (RSI), which is the time that 
elapses between the participant’s response (which, as a 
rule, triggers the suppression of the current target) and 
the onset of the next target. This value is usually kept 
constant throughout the session. A standard value of 
250 msec is set by default in the software. However, it 
may be interesting to use variable RSIs (see below). In 
this case, the sequence of RSIs needs to be prepared. In 
the stimuli input file, each stimulus is followed by the 
associated RSI value. For instance, consider the follow-
ing configuration:

1 0
2 500
3 0
4 0
P
1 0
2 500
3 0
4 0
P



498    Chambaron, GinhaC, and PerruChet

high-resolution performance counter immediately before 
and immediately after the section of code to be timed. The 
difference of these values would indicate the number of 
clock ticks that had elapsed while the code executed. The 
elapsed time can be computed then, by dividing this dif-
ference by the frequency of the processor. Such a method 
allows gSRT-Soft to record RTs with very high accuracy.

SOme meThODOlOgiCAl guiDeliNeS

The remainder of this article outlines some basic meth-
odological principles for making the best use of the soft-
ware. We focus on the most standard SRT paradigms, which 
are also those on which our methodological knowledge is 
the most developed. To give a first hint about the difficulties 
inherent in planning an SRT experiment, let us consider the 
seminal study by Nissen and Bullemer (1987), in which the 
same 10-element sequence (4–2–4–1–3–2–4–3–2–1) was 
continuously repeated. Note that this sequence includes Lo-
cations 2 and 3 three times, and Locations 1 and 4 two times. 
This raw frequency information can be used by participants 
to improve their performance (Shanks, 2003). Moreover, 
even if one considers that sequential information is learned, 
it remains difficult to gain more knowledge about the learn-
ing capabilities of participants. An essential question about 
sequence learning is whether participants take into account 
the information provided by the immediately preceding 
event, by the two prior events, or by still higher order in-
formation. In the sequence used by Nissen and Bullemer, 
Location 3 allows one to predict Location 2, and thus it is 
possible that improved performance simply reflects knowl-
edge of the first-order dependency 3–2. On other parts of 
the sequence, however, predicting the next trial requires 
considering at least two, and occasionally three, successive 
events (predicting the event following 3–2 implies consid-
ering whether the prior location is 1 or 4). The sequence 
makes it impossible to know whether participants actually 
learn more than first-order dependency rules.

The Order of the Dependency Rules
The example above makes it obvious that a proper as-

sessment of what participants learn requires that the order 
of the dependency rules be homogeneous throughout the se-
quence, although a few authors have used hybrid sequences 
embedding relations of different order (e.g., Cohen, Ivry, & 
Keele, 1990). Many well-controlled studies now employ a 
12-element sequence of targets known as the second-order 

trial, one shape was filled solid with the same color as its 
outline, and the other three remained unfilled. The filled 
shape was the target stimulus. Such an option will be con-
sidered with much attention by gSRT-Soft developers for 
future releases if enough researchers request it.

Before running the experiment, the path and the name 
of the data output file need to be specified. If this informa-
tion is kept unchanged from one participant to the next, 
the data will be appended in the specified file. First, the 
file contains various information, such as the name and 
version number of the software, the date, and the time the 
task was performed. Moreover, the configuration param-
eters of the experiment are stored: input device, configu-
ration of the input device, number of boxes, and size of 
the target. Then, the data about the participant are saved. 
They include the nature of the task, the name of input and 
output files, the type of RSI, and the target images. Fi-
nally, in the case of the training phase, the collected data 
are presented in a matrix comprising, on each row, the 
index of the trial, the location of the stimulus for a trial, 
the participant’s answer, a binary value in the good col-
umn indicating whether this response is correct (1) or not 
(0), the RTs in milliseconds, the RSI (if variable), and the 
target image (if variable). The example matrix in Figure 4 
includes eight rows corresponding to the eight trials previ-
ously described. Between the fourth and the fifth trial, a 
pause is inserted, and no data is saved in this case.

In the case of the recognition task, two different kinds 
of data are automatically recorded. First, RTs are stored 
in a matrix similar to the one previously described for the 
practice phase. Second, for each sequence to be recog-
nized, the response given by the participant is stored in 
the output file.

As depicted in Figure 4, RTs are stored in milliseconds, 
with a high degree of accuracy. High-resolution timing is 
supported in modern operating systems (such as Micro-
soft Windows XP) that offer sophisticated mechanisms 
for recording time measures at submillisecond accuracy. 
In our case, high-resolution timing is supported by the two 
main following functions: QueryPerformanceCounter 
and QueryPerformanceFrequency. The first call, Query-
PerformanceCounter, returns the amount of time that has 
elapsed since the system was booted. This amount of time 
is expressed in ticks of the processor clock. The second 
function, QueryPerformanceFrequency, returns the fre-
quency of the processor clock. To retrieve the elapsed time 
of a code section, one has to get the actual value of the 

Index Stimuli Answer Good RT RSI Target
1 1 1 1 838.247 0 grey_circle.bmp
2 2 2 1 330.454 500 black_circle.bmp
3 3 3 1 598.474 0 yellow_circle.bmp
4 4 4 1 750.548 0 blue_circle.bmp
5 1 1 1 794.300 0 grey_triangle.bmp
6 2 2 1 362.484 500 black_triangle.bmp
7 3 3 1 686.425 0 yellow_triangle.bmp
8 4 4 1 694.526 0 blue_triangle.bmp

figure 4. example of a data output file.
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the need for a large number of participants, a between-
 participants design is ill suited to neuropsychological in-
vestigations, in which an individual assessment of learn-
ing ability is often desirable. Most recent studies use a 
within-participants design. However, they often differ 
with regard to the moment at which the transfer sequence 
is displayed during the training session.

The most standard procedure consists in showing the 
transfer sequence toward the end of the training session. 
Assuming that the whole session is divided into n blocks, 
the transfer sequence may be introduced on block n21. 
The RT average on the transfer block is then compared with 
the RT average on the surrounding blocks (block n22 and 
block n). Learning is shown by the presence of a selective 
increase of RTs (or error rate) on block n21 in relation to 
RTs on the surrounding blocks. Although widespread, this 
method is limited by the fact that it provides no indica-
tion of the time course of learning, hence making results 
heavily dependent on the (largely arbitrary) choice of n. 
It is quite possible to imagine that a continuous measure 
of learning would have revealed differences in the learn-
ing curves of two groups of participants who are found to 
perform at the same level on a final test.

When learning curves appear desirable, displaying the 
transfer sequence (or parts of it) throughout the training 
session provides a solution. In a few studies (e.g., Meule-
mans, Van der Linden, & Perruchet, 1998), a random se-
quence is intercalated between successive occurrences 
of the to-be-learned sequence. However, this method re-
quires the use of an ever-changing random sequence to 
prevent learning of the transfer sequence; we saw above 
that this choice is not optimal for assessing the exact 
content of learning. In another method, developed by 
Schvaneveldt and Gomez (1998), an element of the re-
peated sequence is randomly substituted with an element 
of the transfer sequence. Using the SOC1 and SOC2 se-
quences reported above as training and transfer sequence, 
respectively, a sample of the final sequence may be, for 
instance, 3–1–4–2–1–3–4–3–2–4–2–1– . . . , in which the 
italicized locations are transfer elements (i.e., they respect 
the second- order dependency rules of SOC2, whereas the 
other locations respect the rules of SOC1). Averaging—
for each block of trials—the RTs on regular elements on 
the one hand and the RTs on transfer elements on the other 
allows us to obtain two separate curves, the difference of 
which provides evidence of learning.

It is worth stressing that dispatching transfer items 
within the trained sequence not only opens a window 
on the level of learning reached at those points, but also 
changes the to-be-learned material. Instead of being con-
tinuously cycled in deterministic ways, the sequence be-
comes probabilistic. Assuming that 10% of the transfer el-
ements have been randomly introduced, the location of the 
next target at any point in the sequence can be predicted 
only with a probability of .90. The few available studies 
that use both deterministic and probabilistic sequences 
(e.g., Shanks, Channon, Wilkinson, & Curran, 2006) show 
that learning occurs for both types of sequences. Never-
theless, unsurprisingly, learning probabilistic sequences 
appears more difficult. The level of difficulty obviously 

conditional (SOC) sequence (Reed & Johnson, 1994). An ex-
ample of the SOC sequence is 3–1–4–3–2–4–2–1–3–4–1–2 
(Shanks, 2003). In this sequence, participants cannot learn 
to predict the next element on the basis of its raw frequency, 
because each location occurs an equal number of times (3). 
Neither can they predict the next element on the basis of the 
immediately preceding element, because all of the possible 
successions occur equally (e.g., 2 may be followed by 1, 
3, and 4; note that a ubiquitous constraint in SRT tasks is 
that the target does not appear in the same location on two 
successive trials). In SOC sequences, two prior elements 
of context (prior locations) are required in order to fully 
predict the next target. For instance, 4–2 is always followed 
by 3, and, in addition, 3 is always preceded by 4–2. SOC 
sequences are now prevalent; some studies have used first-
order conditional (FOC) sequences, in which the nature 
of any element is fully predicted by a single prior element 
(e.g., Schvane veldt & Gomez, 1998, Experiment 1). Note 
that those sequences are especially easy to learn. Indeed, 
it is sufficient to learn pairwise relations, and, moreover, 
the length of the sequence is limited to the number of pos-
sible locations. For instance, with four locations, only four-
 element FOC sequences are possible (e.g., 2–4–3–1).

generating a Transfer Sequence
The prior section concerned the choice of the to-be-

learned sequence. At first glance, examining whether par-
ticipants’ speed improves throughout the session could pro-
vide a reliable measure of sequence learning. This is not the 
case, however, because performance improvement may be 
due to other factors—for instance, nonspecific familiariza-
tion with the task. In order to reveal learning, RTs on the 
trained sequence need to be compared with RTs on another 
sequence. This other sequence may be randomly generated. 
However, the procedure is not optimal, because it is pos-
sible for a random sequence to share some of the features 
displayed in the to-be-learned sequence. The best method 
consists of carefully selecting another sequence, called the 
transfer sequence. Considering the SOC sequence above 
(hereafter SOC1), a convenient transfer sequence (hereaf-
ter SOC2) would be 4–3–1–2–4–1–3–2–1–4–2–3 (Shanks, 
2003; Wilkinson & Shanks, 2004). Worthy of note, SOC1 
and SOC2 differ only by their second-order transitions (note 
that they are also equal with respect to other potentially in-
fluential features, such as the number of back-and-forth 
movements). Thus, comparing RTs on these two sequences 
should provide a reliable measure of whether participants 
have learned second-order dependency rules. An additional 
precaution consists of counterbalancing SOC1 and SOC2—
half of the participants being trained with SOC1 (and tested 
with SOC2), and the other half being trained with SOC2 
(and tested with SOC1)—in order to cancel the effect of a 
possible difference in difficulty between the two sequences. 
The principles described here for SOC sequences are obvi-
ously generalizable to any other sequences.

when Should the Transfer Sequence  
Be introduced?

In Nissen and Bullemer (1987), a separate group of 
participants was trained with random sequences. Beyond 
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in other controlled activities that are generally construed 
as being undesirable in the context of implicit learning 
studies. The choice of RSI values depends on the purpose 
of the experiment. Indeed, with gSRT-Soft, researchers 
interested in comparing performance patterns across dif-
ferent levels of awareness have the capability of using a 
between-participants RSI manipulation.

The Tests of explicit Knowledge
SRT studies have often been used to compare motor per-

formance in the incidental training task—often construed 
to be a measure of implicit knowledge—with performance 
in a subsequent task aimed at capturing participants’ ex-
plicit knowledge about the structure of the training mate-
rials. There is consensus that the test of explicit learning 
needs to be as sensitive as possible in order to reveal even 
fleeting evidence of explicit knowledge (see Shanks & 
St. John, 1994, about the sensitivity criterion). In this re-
gard, a yes/no recognition test appears to be a reasonable 
choice. Small parts of the repeated sequence, intermixed 
with small parts of the transfer sequence, are displayed 
to participants, who have to respond to the target just as 
they had in the training phase. Note that the resulting RTs 
provide an additional measure of motor performance that 
does not necessarily converge with performance data col-
lected during the training session (see Shanks et al., 2006). 
The length of the to-be-recognized sub-sequences gen-
erally comprises between three and six trials. After each 
sub-sequence, participants are asked to judge whether 
they had seen the target during the training session.

Various generation tasks are also used to assess the 
amount of explicit knowledge. In this type of task, the re-
lationship between the target appearance and participants’ 
responses is reversed in such a way that participants’ key-
presses (or, alternatively, clicks in a target, when the mouse 
option is selected) elicit the appearance of the selected 
target on the screen. In free generation tasks, participants 
are asked to reproduce at best the sequence they saw dur-
ing the training session. This task may be thought of as a 
recall task adapted to the case of sequential materials (for 
a detailed analysis of the resulting data, see Perruchet & 
Amorim, 1992). However, other instructions are possible. 
Participants may be told to generate the first sequence 
that comes to mind, and, in this case, the generation task 
becomes a nominally implicit task. In the case of cued or 
trial-by-trial generation tasks, additional cues are given 
to the participants, whose task is to produce the correct 
continuation response in the sequence. If performance is 
at chance, this indicates that participants have learned im-
plicitly. However, there is much evidence that participants 
are able to generate the learned sequence, suggesting that 
learning requires at least some explicit knowledge (Per-
ruchet & Amorim, 1992; Shanks & Johnstone, 1999).

The use of this kind of generation task does not show 
the researcher whether good performance is due only to 
explicit knowledge or is partly mediated by implicit knowl-
edge. In order to measure the respective contributions of 
implicit and explicit knowledge, the process dissociation 
procedure (PDP) initially implemented by Jacoby (1991) 
can be used. By varying the instructions given to partici-

depends on the proportion of transfer elements introduced 
during training. For instance, Schvaneveldt and Gomez 
(1998) reported that they had failed to obtain a reliable 
performance improvement with 20% of transfer trials with 
SOC sequences, but that they were successful with 10%. 
Shanks et al. (2006) reported quick learning of SOC se-
quences with 15% of transfer elements—even in amnesic 
patients. The fact that the repetition structure is less salient 
is often interpreted as an advantage, with the idea that the 
difficulty of detecting the repetition structure may disrupt 
the explicit mode of learning (e.g., Shanks et al., 2006). 
An additional advantage of probabilistic sequences is that 
they may be more representative of sequential events in 
the real world (Hunt & Aslin, 2001).

The Number of Trials per Block and  
the Number of Blocks

As a rule, the whole training session is divided into 
blocks of about 100 trials separated by self-paced pauses. 
The exact number of trials per block often depends on 
particularities of the repeated sequence. For instance, with 
12-element sequences, the length of the block may be set 
to 96, in order to include eight full sequences. It is also 
possible to add a few random trials at the beginning of 
each block, in order to make the repetition structure less 
salient. The number of blocks is more difficult to select. 
It depends on the nature of the repeated sequence, the 
sample of participants, the objective of the researchers, 
and so on. However, it is worth stressing that studies using 
a small number of blocks (e.g., Perruchet et al., 1997) or 
using probabilistic sequences that allow the elaboration of 
learning curves (e.g., Shanks et al., 2006) have revealed 
that learning emerges very early during the session, and 
often does not improve with further practice. Of course, 
this does not mean that further practice does not induce 
any changes. It is possible, for instance, that performance 
in subsequent tests of explicit knowledge depends on the 
amount of practice. However, if the main objective of the 
researchers is to give evidence of implicit learning through 
RT measures, using only a few blocks of trials may be suf-
ficient. For instance, with SOC sequences, three or four 
100-trial blocks appear sufficient for getting evidence of 
reliable learning.

The Response–Stimulus interval (RSi)
Most SRT studies have used RSIs around 200 or 

250 msec. However, a few studies have used longer inter-
vals. For instance, Frensch, Buchner, and Lin (1994) used 
RSIs of up to 1,500 msec and still observed learning. On 
the other hand, a few studies have used a 0-msec RSI, with 
various outcomes. Perruchet et al. (1997) reported no RT 
improvement with intact explicit knowledge; Destrebecqz 
and Cleeremans (2001) reported an exactly inverse pat-
tern; and Shanks et al. (2006) reported improved per-
formance both on RTs and on tests of explicit learning. 
Because these empirical results do not provide us with 
reliable guidelines for a choice, it may be better to start 
from theoretical considerations. It may be thought that a 
long RSI gives participants the opportunity of elaborating 
conscious strategies, rehearsing the sequence, or engaging 
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for their help at various stages of elaboration. Correspondence concern-
ing this article should be addressed to S. Chambaron, Cognitive Science 
Research Unit, Université Libre de Bruxelles, Av. F. D. Roosevelt, 50, CP 
191, 1050 Brussels, Belgium (e-mail: schambar@ulb.ac.be).
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pants, the procedure is aimed at dissociating conscious and 
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asked to generate the learned sequence by remembering it 
as clearly as possible. The exclusion task, however, requires 
participants to avoid generating the regularities embedded 
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ments applying the PDP to SRT tasks. They demonstrated 
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avoid reproducing the learned sequence, despite having 
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Generation tasks are not implemented in the current 
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sequence and to produce the sixth element. In the inclu-
sion condition, participants are instructed by a green 
question mark displayed on the screen to produce the 
next element of the training sequence. In the exclusion 
condition, participants have to generate a different con-
tinuation response. In this case, a red question mark will 
appear on the screen.

Further releases of gSRT-Soft that include these new 
features will soon be available.

SummARy

In short, the gSRT-Soft should allow the user to run 
sequence-learning experiments quite easily and with ex-
cellent time accuracy. Obviously, the value of the results 
will depend on the care with which each researcher plans 
his or her research. We have provided some guidelines 
for designing experiments involving standard paradigms. 
There is no doubt that SRT studies, and learning studies in 
general, raise tricky methodological problems when new 
issues are explored. We hope that the capabilities of the 
software will encourage researchers to investigate unex-
plored directions of research in learning.

Evaluation copies of gSRT-Soft may be obtained free 
of charge by contacting the authors. Future releases of 
gSRT-Soft will be published as free software under the 
terms of the general public license (see www.gnu.org for 
more details about the GPL). Binary software and source 
code of the SRT task software will be available from a 
dedicated Web site. The authors of gSRT-Soft ask that 
publications involving the use of the original or modified 
versions of the software cite this article.
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