
Implicit learning is usually defined as the process by
which people learn without intent and without being able
to clearly articulate what they are learning (for reviews,
see Perruchet & Pacton, 2006; Shanks, 2005). The grow-
ing interest in implicit learning stems from its crucial role
in the acquisition of one’s mother language and in the de-
velopment of other cognitive, social, and motor abilities.
Another attractive feature of implicit learning is that it
has proven to be relatively insensitive to age (e.g., Curran,
1997; D. V. Howard & J. H. Howard, 1989; Kotchoubey,
Haisst, Daum, Schugens, & Birbaumer, 2000) and is pre-
served in a number of neuropsychological disorders (e.g.,
McDowall & Martin, 1996; Smith, Siegert, McDowall, &
Abernethy, 2001; Stevens et al., 2002; Zillmer & Spiers,
2001). As a consequence, the phenomenon is a focus of in-
vestigation not only for laboratory researchers, but also for
those oriented toward educational or clinical objectives.

Although several tasks have been used to investigate
implicit learning (e.g., the artificial grammar learning
task proposed by Reber, 1967, and the dynamic control
task used by Berry & Broadbent, 1984), motor sequence-
 learning tasks are increasingly popular. In the most typi-
cal paradigm, coined the serial reaction time (SRT; Nis-
sen & Bullemer, 1987) task, a target stimulus appears on
successive trials at one of a limited number of positions.
Participants are asked to react to the appearance of the
target by pressing a key that spatially matches the loca-
tion of the target on a keyboard. Unknown to participants,
the sequence of events is not random. It usually consists
of the continuous cycling of the same sequence. Learning

is attested by the fact that reaction times (RTs) progres-
sively decrease with practice of the repeated sequence
and suddenly increase when a random sequence is un-
expectedly inserted. This indicates that participants have
acquired knowledge about the structured nature of the re-
peated sequence. However, even if it has been shown that
participants demonstrate sequence learning, the debate
about the nature of the acquired knowledge—implicit ver-
sus explicit—remains open. Consequently, various tests
of awareness have been proposed for evaluating explicit
and implicit sequence knowledge. First, Perruchet and
Amorim (1992) developed a recognition task in which
participants are presented some short sequences and have
to discriminate between the sequences that follow the
learned structure and the sequences that violate it. Subse-
quent studies have established that participants are able to
recognize and discriminate correct sequences (Perruchet,
Bigand, & Benoit-Gonin, 1997; Shanks, 2003; Shanks,
Wilkinson, & Channon, 2003). Second, other researchers
have proposed various generation tasks in which partici-
pants have to reproduce either the whole learned sequence
or some fragments of it. In the case of the free genera-
tion task (Destrebecqz & Cleeremans, 2001; Perruchet &
Amorim, 1992; Shanks & Johnstone, 1999), participants
have to freely generate a sequence that is as similar as
possible to the sequence learned during the training phase.
This implies that participants have to remember a sub-
stantial amount of the structure of this learned sequence.
On the contrary, in a cued generation task (Willingham,
Nissen, & Bullemer, 1989), participants are presented ele-

 493 Copyright 2008 Psychonomic Society, Inc.

gSRT-Soft: A generic software application
and some methodological guidelines to
investigate implicit learning through

visual–motor sequential tasks

Stéphanie Chambaron, Dominique GinhaC, anD pierre perruChet
Université Libre de Bruxelles, Brussels, Belgium

Serial reaction time tasks and, more generally, the visual–motor sequential paradigms are increasingly popular
tools in a variety of research domains, from studies on implicit learning in laboratory contexts to the assessment
of residual learning capabilities of patients in clinical settings. A consequence of this success, however, is the
increased variability in paradigms and the difficulty inherent in respecting the methodological principles that two
decades of experimental investigations have made more and more stringent. The purpose of the present article is
to address those problems. We present a user-friendly application that simplifies running classical experiments,
but is flexible enough to permit a broad range of nonstandard manipulations for more specific objectives. Basic
methodological guidelines are also provided, as are suggestions for using the software to explore unconventional
directions of research. The most recent version of gSRT-Soft may be obtained for free by contacting the authors.

Behavior Research Methods
2008, 40 (2), 493-502
doi: 10.3758/BRM.40.2.493

S. Chambaron, schambar@ulb.ac.be

494 Chambaron, GinhaC, and PerruChet

submillisecond accuracy (more detailed explanations are
given in the section dealing with records of RTs).

The purpose of the present article is to help research-
ers address all of these difficulties. We propose flexible,
easy-to-use software and some guidelines for using it in
accordance with up-to-date methodological principles.

OveRview Of GSRT-Soft

gSRT-Soft is a user-friendly application that makes it
very easy to run classical SRT experiments, but is flexible
enough to permit a broad range of nonstandard manipula-
tions for more specific objectives. By default, the software
has been designed to allow a straightforward and time-
saving implementation of the most popular paradigms
(e.g., a four-choice SRT task, with participants’ responses
being entered on the computer keyboard). Thus, it can be
used, for instance, by a neuropsychologist wishing only
to add a standard SRT task to a large-scale test battery of
cognitive functions. However, it also integrates a number
of features that enable users to implement nonstandard sit-
uations. For instance, the targets can be arranged in order
to draw a labyrinth that covers all the bidimensional space
of the screen, and a computer mouse or graphic tablet can
be used as a manipulandum instead of the keyboard.

gSRT-Soft was developed in C11, which was chosen
because it is a general-purpose programming language
with high-level and low-level capabilities. The high-level
capabilities allow easy development of large pieces of
software, whereas the low-level capabilities allow the
programmer to manage real-time aspects of the software,
such as high-resolution measures of RTs.

The software is a Windows-based program using menus,
buttons, and selection boxes accessible with a mouse. It
includes two main menus—Configuration and Partici-
pant. Configuration determines the general parameters
for a given experiment, which need to be set before the
Participant menu can be accessed. First, the Configuration
menu allows either the generation of a new configuration,
the loading of an existing configuration stored on a file,
or the saving of the current configuration to a file. These
files are standard INI files frequently used for Microsoft
Windows-based applications. In the second menu, the New
Participant menu specifies the particular values used for
each participant of a previously configured experiment.

Configuration
Figure 1 shows the available possibilities in the Con-

figuration dialog box. The main choice concerns whether
participants’ responses are made on the keyboard or with
a mouse. As anywhere else in the program, the user indi-
cates his or her choice by clicking the appropriate radio
button. When the keyboard option (default) is selected,
two suboptions follow. Because an overwhelming propor-
tion of SRT studies involve the same stimulus–response
pattern (namely, four target locations and four spatially
congruent response keys), this configuration is proposed
as a default (the researcher can choose either the Euro-
pean AZERTY or the U.S. QWERTY keyboard). How-
ever, the configuration can be customized with regard to

ments of the sequences and are instructed to press the but-
ton corresponding to where they think the next stimulus
will appear. The stimulus remains present until the par-
ticipant makes the correct response. A variation of this
procedure is the trial-by-trial sequence generation task
proposed by Wilkinson and Shanks (2004). Participants
observe a short, five-element sequence of targets from the
training sequence and then have to produce a single gener-
ation response corresponding to the correct continuation
response. Norman, Price, Duff, and Mentzoni (2007) have
proposed a novel generation task, the generation rotation
task. This task is a modification of the existing trial-by-
trial generation task, but with the addition of a randomly
varying contextual cue. According to Norman et al., this
task provides a more robust measure of explicit sequence
knowledge.

Several reasons explain the success of the SRT para-
digm. There is no doubt that sequential behavior is in-
volved in virtually any world-wide ability, from language
to the organization of movements, thus ensuring a good
ecological validity to sequential tasks. The use of a visual–
motor implementation makes a quantitative assessment of
learning easy to get, and robust learning has proven to be
possible within a short time in a large variety of popula-
tions, from children (Vinter & Perruchet, 2000) to elderly
people (J. H. Howard & D. V. Howard, 1997). Another ad-
vantage of the SRT task over some other tasks of implicit
learning is that participants are in truly incidental condi-
tions of learning, because the effect of regularities can
be assessed without participants having been informed
about the presence of hidden regularities (Cleeremans,
1993; Destrebecqz & Cleeremans, 2001). Finally, it has
been shown that the reliability of SRT tasks is pretty good
in comparison with other tasks of implicit learning (Salt-
house, McGuthry, & Hambrick, 1999). This property is
essential when the aim of the researcher is to compare the
learning abilities of different samples of participants and,
moreover, when the residual learning abilities of patients
need to be assessed on an individual basis.

A potential difficulty in the development of dedi-
cated SRT task software is the large number of to-be-
 implemented procedures that are becoming increasingly
complex. Indeed, since the initial study by Nissen and
Bullemer (1987), SRT tasks have been the object of a large
number of investigations that have led to both the emer-
gence of a number of variants and the growing sophisti-
cation of methodological controls (e.g., Bischoff-Grethe,
Goedert, Willingham, & Grafton, 2004; Chambaron, Gin-
hac, & Perruchet, 2006; Curran & Keele, 1993; Osman,
Bird, & Heyes, 2005; Perruchet et al., 1997; Ziessler &
Nattkemper, 2001).

Another possible obstacle against a still larger extension
of SRT tasks, however, is the increasing difficulty of their
implementation. SRT tasks require accurate time measure-
ments, and this has been shown to be problematic in a mul-
titask environment, such as Microsoft Windows. It has been
recommended to use MS-DOS only, in which millisecond
accuracy is possible (Myors, 1999). However, modern op-
erating systems, such as Microsoft Windows XP, offer so-
phisticated mechanisms for recording time measures with

GSrt-Soft 495

allows the exploration of learning of much richer statisti-
cal regularities.

The use of a computer mouse is essentially aimed at
overcoming the practical constraints linked to the use of
a computer keyboard. The number of events is no longer
limited, except by the spatial constraints linked to the posi-
tioning of the targets on a computer screen. In gSRT-Soft,
the targets can be disposed either in a matrix (X rows and
Y columns, maximum) or along a circle (X targets, maxi-
mum). The maximum values for rows and columns in a
matrix layout or in a circle layout are dependent on screen
resolution and target size. For example, with a standard
XGA resolution (1,024 3 768 pixels) and a 100-pixel
target size, the maximum number of rows is six and the
maximum number of columns is nine. In the case of a
circle layout, the maximum number of targets is 12. These
maximum values are automatically evaluated in order to
avoid an overlap between two consecutive locations on
the screen.

Three different configurations (standard 4-position, 3 3
4 matrix, and 12-position circle) are depicted in Figure 2.

Note that with a matrix pattern, the sequence can be
ordered in such a way that the target draws a labyrinth
on the screen. A legitimate question, however, may be
whether using a mouse recruits the same learning process
as when keypressing is involved. To address this question,

which keys match which target. The selection of the keys
may serve several objectives. For instance, in most stud-
ies, there is a direct mapping between the location of the
target on the screen and the spatial arrangement of the
keys on the keyboard. Whether stimulus–response map-
ping is direct or not, however, has proven to be influential
in a large number of motor control studies (e.g., Deroost
& Soetens, 2006; Stöcker, Sebald, & Hoffmann, 2003).
This software allows the exploration of the effect of this
variable in SRT studies. It is possible, for instance, to pair
the leftmost target with the rightmost key, or to design any
other stimulus–response pairings.

During keyboard configuration, changing the number
of keys is also possible, although this option may turn
out to have limited utility. This is not because the nearly
ubiquitous use of four target locations would be rooted
in a principled advantage of this specific configuration;
rather, it is due to the fact that using more than four keys
causes a considerable slowing down of the responses and/
or a dramatic increase in the error rate, for obvious rea-
sons (for the use of six keys, see, e.g., Cleeremans, 1995;
Heyes & Foster, 2002; Jiménez, Méndez, & Cleeremans,
1996). Limiting the number of possible events to four (or
even six) can be damaging, restricting the ecological va-
lidity of the SRT task in a skill-learning context. Also, a
sequence involving a larger number of different events

figure 1. The New Configuration dialog box.

figure 2. Different configurations for the targets.

496 Chambaron, GinhaC, and PerruChet

designs individual, different blocks that vary randomly
between participants, for example, the researcher must
create one stimuli input file for each participant, and must
include every block of stimuli in the desired order.

The stimuli input file must include a list of target loca-
tions. In the file, there is only one stimulus per line. The
separator of the stimuli is the end-of-line (EOL) character.
Instead of a stimulus, a line may include a “P” character,
which indicates the presence of a self-paced pause. For
instance, when the software reads the following 10 lines:

1
2
3
4
P
1
2
3
4
P

it generates two sequences, in which the target moves from
the left to the right, and the two sequences are separated
by a pause.

Moreover, concerning the recognition test, participants
are classically presented with small sequence fragments
and are asked to classify them as instances of the training
material or not. In this case, the “R” character is inserted
in the stimuli input file between each sequence to be rec-
ognized. The user decides the number of sequences to be
recognized and the order in which these sequences are to
be presented to the participants. In other words, the user
has to prepare the set of sequences in the stimuli input file
in such a way that “old” versus “new” sequences appear in
a specific order. For instance, if we consider the sequence
1–2–3–4 to be the training sequence (i.e., old sequence),
then the stimuli input file that reads as follows:

we (Chambaron et al., 2006) have borrowed the design of
a prior SRT study (Shanks, 2003), using either a keyboard
or a mouse, as a function of participants. Although the
mean RT was significantly larger with a mouse, evidence
of learning was observed in both conditions, with no sig-
nificant difference in the amount of learning. This result
suggests that using a mouse may represent a promising
alternative to the use of the keyboard whenever the re-
searcher wishes to include more than a very few different
targets in the trained sequence.

Finally, the size of the target needs to be defined. The
default value is 100 pixels. However, the target can be re-
duced (to 1 pixel!) if the researcher wishes to degrade the
perceptual discrimination of the stimuli—a procedure that
may strengthen the role of location anticipation. Note that
with the mouse option, a small target also increases motor
accuracy constraints. The size of the target can also be
increased when the opposite objectives are aimed. For ob-
vious reasons, the maximum size depends on the number
of targets and on their spatial configuration. When an il-
legal (i.e., too large) value is entered, the program returns
an error message indicating the maximum value allowed,
given the specific configuration.

By default, the possible locations of the targets are
marked on the screen throughout the session by empty boxes
in which the targets appear. However, an option can be se-
lected in the Configuration menu, preventing these boxes
from being displayed on the screen throughout the session.

New Participant
After the configuration is complete, clicking on the

New Participant element menu opens the window dis-
played in Figure 3. The first choice concerns the task to
be run. The label “SRT task” designates the main training
task. This task may be followed by a recognition task. The
general organization is the same for the two tasks.

The training sequences that a researcher may wish to
explore may differ along a virtually unlimited number of
features. They may be composed from the repetition of a
sequence, but they also may be generated by a finite-state
grammar (e.g., Cleeremans & McClelland, 1991) or other
set of rules. They may be deterministic or probabilistic
(see below), and they may differ in length and in a num-
ber of other parameters. This boundless variety makes it
unmanageable to elaborate the sequence through an in-
teractive set of options. The problem has been solved in
gSRT-Soft by dissociating the generation of the sequence
from the main program, with the consequence that the
program reads only a previously prepared sequence of tri-
als stored in the stimuli input file. A few typical sequences
are included in the package (available on request). In most
other cases, a standard spreadsheet, such as Microsoft
Excel, prepares a set of original data quite well. For more
sophisticated objectives, the researcher may use his or her
preferred programming language, provided the resulting
values are stored as a text file. In the case of a repetition of
a sequence, the researcher only needs to generate a single
text file that includes all the successive positions of the
target. This text file will be used for all of the partici-
pants in the experiment. On the contrary, if the researcher

figure 3. The New Participant dialog box.

GSrt-Soft 497

There is no delay between Locations 1 and 2, nor between
Locations 3 and 4, but there is a 500-msec interval be-
tween Locations 2 and 3.

Another important parameter in gSRT-Soft is the pos-
sibility of displaying any bitmap image on the screen as
a target stimulus. Some basic bitmap files are distributed
with the package, including geometric shapes (circle,
square, triangle) in various colors (blue, yellow, red, black,
etc.). However, any bitmap file can be used as a target.
The image is automatically resized in order to be correctly
displayed in the boxes on the screen. In the same manner
as with the RSI value, it is possible to choose either a con-
stant picture for all the stimuli or a variable picture associ-
ated to each stimulus. Consider the following example:

1 grey_circle.bmp
2 black_circle.bmp
3 yellow_circle.bmp
4 blue_circle.bmp
P
1 grey_triangle.bmp
2 black_triangle.bmp
3 yellow_triangle.bmp
4 blue_triangle.bmp
P

In the first sequence 1–2–3–4, a circle of different colors
(grey, black, yellow, blue) is used, whereas in the second
sequence, a triangle is displayed.

This option is innovative, making gSRT-Soft flexible
enough to allow the programming of novel SRT proce-
dures. We can imagine realizing SRT tasks with sequences
of letters, words, or pictures. Such a possibility is used in
the serial naming task developed by Goschke and Bolte
(2007) in order to investigate implicit learning of repeated
sequences of abstract semantic categories. In this task,
participants have to name pictures of objects displayed on
a screen (e.g., table, shirt, etc.). Unknown to the partici-
pants, the semantic categories of the objects (e.g., furni-
ture, clothing) follow a repeating sequence.

For obvious reasons, we envision generating some se-
quences based on variable RSI values and variable target
images. In such a case, the stimuli input file must be writ-
ten in the manner of the following:

1 0 grey_circle.bmp
2 500 black_circle.bmp
3 0 yellow_circle.bmp
4 0 blue_circle.bmp
P
1 0 grey_triangle.bmp
2 500 black_triangle.bmp
3 0 yellow_triangle.bmp
4 0 blue_triangle.bmp
P

However, the present release of gSRT-Soft does not allow
the display of multiple stimulus displays at the same time,
as was seen in the procedure used by Norman et al. (2007).
In their experiments, the four possible target positions were
indicated by four shape outlines (heart, circle, square, cross)
colored red, green, or blue on a white background. On each

1
2
3
4
R
2
1
3
4
R
4
2
3
1
R
1
2
3
4
R

presents four sequences to be recognized in the following
order: old, new, new, old. For simplicity, a two-alternative
scale has been chosen in gSRT-Soft with default values for
the question Do you recognize this sequence? and the two
possible answers (yes, no). These default values can be
modified by the user in the INI file. At present, gSRT-Soft
does not allow recognition tasks based on gradual scales—
for example, from 0 (highly unfamiliar sequence) to 10
(highly familiar sequence). Future releases may include
such an option if this is requested.

The stimuli input file may be the same for all of the par-
ticipants of a given experiment (note that by default, the
program displays the path and the name of the last file that
has been loaded, so this information does not need to be
typed for each participant). However, in many cases, the
stimuli input file differs from participant to participant,
generally at the end of counterbalancing or randomizing.

An important parameter in the SRT task is the
response– stimulus interval (RSI), which is the time that
elapses between the participant’s response (which, as a
rule, triggers the suppression of the current target) and
the onset of the next target. This value is usually kept
constant throughout the session. A standard value of
250 msec is set by default in the software. However, it
may be interesting to use variable RSIs (see below). In
this case, the sequence of RSIs needs to be prepared. In
the stimuli input file, each stimulus is followed by the
associated RSI value. For instance, consider the follow-
ing configuration:

1 0
2 500
3 0
4 0
P
1 0
2 500
3 0
4 0
P

498 Chambaron, GinhaC, and PerruChet

high-resolution performance counter immediately before
and immediately after the section of code to be timed. The
difference of these values would indicate the number of
clock ticks that had elapsed while the code executed. The
elapsed time can be computed then, by dividing this dif-
ference by the frequency of the processor. Such a method
allows gSRT-Soft to record RTs with very high accuracy.

SOme meThODOlOgiCAl guiDeliNeS

The remainder of this article outlines some basic meth-
odological principles for making the best use of the soft-
ware. We focus on the most standard SRT paradigms, which
are also those on which our methodological knowledge is
the most developed. To give a first hint about the difficulties
inherent in planning an SRT experiment, let us consider the
seminal study by Nissen and Bullemer (1987), in which the
same 10-element sequence (4–2–4–1–3–2–4–3–2–1) was
continuously repeated. Note that this sequence includes Lo-
cations 2 and 3 three times, and Locations 1 and 4 two times.
This raw frequency information can be used by participants
to improve their performance (Shanks, 2003). Moreover,
even if one considers that sequential information is learned,
it remains difficult to gain more knowledge about the learn-
ing capabilities of participants. An essential question about
sequence learning is whether participants take into account
the information provided by the immediately preceding
event, by the two prior events, or by still higher order in-
formation. In the sequence used by Nissen and Bullemer,
Location 3 allows one to predict Location 2, and thus it is
possible that improved performance simply reflects knowl-
edge of the first-order dependency 3–2. On other parts of
the sequence, however, predicting the next trial requires
considering at least two, and occasionally three, successive
events (predicting the event following 3–2 implies consid-
ering whether the prior location is 1 or 4). The sequence
makes it impossible to know whether participants actually
learn more than first-order dependency rules.

The Order of the Dependency Rules
The example above makes it obvious that a proper as-

sessment of what participants learn requires that the order
of the dependency rules be homogeneous throughout the se-
quence, although a few authors have used hybrid sequences
embedding relations of different order (e.g., Cohen, Ivry, &
Keele, 1990). Many well-controlled studies now employ a
12-element sequence of targets known as the second-order

trial, one shape was filled solid with the same color as its
outline, and the other three remained unfilled. The filled
shape was the target stimulus. Such an option will be con-
sidered with much attention by gSRT-Soft developers for
future releases if enough researchers request it.

Before running the experiment, the path and the name
of the data output file need to be specified. If this informa-
tion is kept unchanged from one participant to the next,
the data will be appended in the specified file. First, the
file contains various information, such as the name and
version number of the software, the date, and the time the
task was performed. Moreover, the configuration param-
eters of the experiment are stored: input device, configu-
ration of the input device, number of boxes, and size of
the target. Then, the data about the participant are saved.
They include the nature of the task, the name of input and
output files, the type of RSI, and the target images. Fi-
nally, in the case of the training phase, the collected data
are presented in a matrix comprising, on each row, the
index of the trial, the location of the stimulus for a trial,
the participant’s answer, a binary value in the good col-
umn indicating whether this response is correct (1) or not
(0), the RTs in milliseconds, the RSI (if variable), and the
target image (if variable). The example matrix in Figure 4
includes eight rows corresponding to the eight trials previ-
ously described. Between the fourth and the fifth trial, a
pause is inserted, and no data is saved in this case.

In the case of the recognition task, two different kinds
of data are automatically recorded. First, RTs are stored
in a matrix similar to the one previously described for the
practice phase. Second, for each sequence to be recog-
nized, the response given by the participant is stored in
the output file.

As depicted in Figure 4, RTs are stored in milliseconds,
with a high degree of accuracy. High-resolution timing is
supported in modern operating systems (such as Micro-
soft Windows XP) that offer sophisticated mechanisms
for recording time measures at submillisecond accuracy.
In our case, high-resolution timing is supported by the two
main following functions: QueryPerformanceCounter
and QueryPerformanceFrequency. The first call, Query-
PerformanceCounter, returns the amount of time that has
elapsed since the system was booted. This amount of time
is expressed in ticks of the processor clock. The second
function, QueryPerformanceFrequency, returns the fre-
quency of the processor clock. To retrieve the elapsed time
of a code section, one has to get the actual value of the

Index Stimuli Answer Good RT RSI Target
1 1 1 1 838.247 0 grey_circle.bmp
2 2 2 1 330.454 500 black_circle.bmp
3 3 3 1 598.474 0 yellow_circle.bmp
4 4 4 1 750.548 0 blue_circle.bmp
5 1 1 1 794.300 0 grey_triangle.bmp
6 2 2 1 362.484 500 black_triangle.bmp
7 3 3 1 686.425 0 yellow_triangle.bmp
8 4 4 1 694.526 0 blue_triangle.bmp

figure 4. example of a data output file.

GSrt-Soft 499

the need for a large number of participants, a between-
 participants design is ill suited to neuropsychological in-
vestigations, in which an individual assessment of learn-
ing ability is often desirable. Most recent studies use a
within-participants design. However, they often differ
with regard to the moment at which the transfer sequence
is displayed during the training session.

The most standard procedure consists in showing the
transfer sequence toward the end of the training session.
Assuming that the whole session is divided into n blocks,
the transfer sequence may be introduced on block n21.
The RT average on the transfer block is then compared with
the RT average on the surrounding blocks (block n22 and
block n). Learning is shown by the presence of a selective
increase of RTs (or error rate) on block n21 in relation to
RTs on the surrounding blocks. Although widespread, this
method is limited by the fact that it provides no indica-
tion of the time course of learning, hence making results
heavily dependent on the (largely arbitrary) choice of n.
It is quite possible to imagine that a continuous measure
of learning would have revealed differences in the learn-
ing curves of two groups of participants who are found to
perform at the same level on a final test.

When learning curves appear desirable, displaying the
transfer sequence (or parts of it) throughout the training
session provides a solution. In a few studies (e.g., Meule-
mans, Van der Linden, & Perruchet, 1998), a random se-
quence is intercalated between successive occurrences
of the to-be-learned sequence. However, this method re-
quires the use of an ever-changing random sequence to
prevent learning of the transfer sequence; we saw above
that this choice is not optimal for assessing the exact
content of learning. In another method, developed by
Schvaneveldt and Gomez (1998), an element of the re-
peated sequence is randomly substituted with an element
of the transfer sequence. Using the SOC1 and SOC2 se-
quences reported above as training and transfer sequence,
respectively, a sample of the final sequence may be, for
instance, 3–1–4–2–1–3–4–3–2–4–2–1– . . . , in which the
italicized locations are transfer elements (i.e., they respect
the second- order dependency rules of SOC2, whereas the
other locations respect the rules of SOC1). Averaging—
for each block of trials—the RTs on regular elements on
the one hand and the RTs on transfer elements on the other
allows us to obtain two separate curves, the difference of
which provides evidence of learning.

It is worth stressing that dispatching transfer items
within the trained sequence not only opens a window
on the level of learning reached at those points, but also
changes the to-be-learned material. Instead of being con-
tinuously cycled in deterministic ways, the sequence be-
comes probabilistic. Assuming that 10% of the transfer el-
ements have been randomly introduced, the location of the
next target at any point in the sequence can be predicted
only with a probability of .90. The few available studies
that use both deterministic and probabilistic sequences
(e.g., Shanks, Channon, Wilkinson, & Curran, 2006) show
that learning occurs for both types of sequences. Never-
theless, unsurprisingly, learning probabilistic sequences
appears more difficult. The level of difficulty obviously

conditional (SOC) sequence (Reed & Johnson, 1994). An ex-
ample of the SOC sequence is 3–1–4–3–2–4–2–1–3–4–1–2
(Shanks, 2003). In this sequence, participants cannot learn
to predict the next element on the basis of its raw frequency,
because each location occurs an equal number of times (3).
Neither can they predict the next element on the basis of the
immediately preceding element, because all of the possible
successions occur equally (e.g., 2 may be followed by 1,
3, and 4; note that a ubiquitous constraint in SRT tasks is
that the target does not appear in the same location on two
successive trials). In SOC sequences, two prior elements
of context (prior locations) are required in order to fully
predict the next target. For instance, 4–2 is always followed
by 3, and, in addition, 3 is always preceded by 4–2. SOC
sequences are now prevalent; some studies have used first-
order conditional (FOC) sequences, in which the nature
of any element is fully predicted by a single prior element
(e.g., Schvane veldt & Gomez, 1998, Experiment 1). Note
that those sequences are especially easy to learn. Indeed,
it is sufficient to learn pairwise relations, and, moreover,
the length of the sequence is limited to the number of pos-
sible locations. For instance, with four locations, only four-
 element FOC sequences are possible (e.g., 2–4–3–1).

generating a Transfer Sequence
The prior section concerned the choice of the to-be-

learned sequence. At first glance, examining whether par-
ticipants’ speed improves throughout the session could pro-
vide a reliable measure of sequence learning. This is not the
case, however, because performance improvement may be
due to other factors—for instance, nonspecific familiariza-
tion with the task. In order to reveal learning, RTs on the
trained sequence need to be compared with RTs on another
sequence. This other sequence may be randomly generated.
However, the procedure is not optimal, because it is pos-
sible for a random sequence to share some of the features
displayed in the to-be-learned sequence. The best method
consists of carefully selecting another sequence, called the
transfer sequence. Considering the SOC sequence above
(hereafter SOC1), a convenient transfer sequence (hereaf-
ter SOC2) would be 4–3–1–2–4–1–3–2–1–4–2–3 (Shanks,
2003; Wilkinson & Shanks, 2004). Worthy of note, SOC1
and SOC2 differ only by their second-order transitions (note
that they are also equal with respect to other potentially in-
fluential features, such as the number of back-and-forth
movements). Thus, comparing RTs on these two sequences
should provide a reliable measure of whether participants
have learned second-order dependency rules. An additional
precaution consists of counterbalancing SOC1 and SOC2—
half of the participants being trained with SOC1 (and tested
with SOC2), and the other half being trained with SOC2
(and tested with SOC1)—in order to cancel the effect of a
possible difference in difficulty between the two sequences.
The principles described here for SOC sequences are obvi-
ously generalizable to any other sequences.

when Should the Transfer Sequence
Be introduced?

In Nissen and Bullemer (1987), a separate group of
participants was trained with random sequences. Beyond

500 Chambaron, GinhaC, and PerruChet

in other controlled activities that are generally construed
as being undesirable in the context of implicit learning
studies. The choice of RSI values depends on the purpose
of the experiment. Indeed, with gSRT-Soft, researchers
interested in comparing performance patterns across dif-
ferent levels of awareness have the capability of using a
between-participants RSI manipulation.

The Tests of explicit Knowledge
SRT studies have often been used to compare motor per-

formance in the incidental training task—often construed
to be a measure of implicit knowledge—with performance
in a subsequent task aimed at capturing participants’ ex-
plicit knowledge about the structure of the training mate-
rials. There is consensus that the test of explicit learning
needs to be as sensitive as possible in order to reveal even
fleeting evidence of explicit knowledge (see Shanks &
St. John, 1994, about the sensitivity criterion). In this re-
gard, a yes/no recognition test appears to be a reasonable
choice. Small parts of the repeated sequence, intermixed
with small parts of the transfer sequence, are displayed
to participants, who have to respond to the target just as
they had in the training phase. Note that the resulting RTs
provide an additional measure of motor performance that
does not necessarily converge with performance data col-
lected during the training session (see Shanks et al., 2006).
The length of the to-be-recognized sub-sequences gen-
erally comprises between three and six trials. After each
sub-sequence, participants are asked to judge whether
they had seen the target during the training session.

Various generation tasks are also used to assess the
amount of explicit knowledge. In this type of task, the re-
lationship between the target appearance and participants’
responses is reversed in such a way that participants’ key-
presses (or, alternatively, clicks in a target, when the mouse
option is selected) elicit the appearance of the selected
target on the screen. In free generation tasks, participants
are asked to reproduce at best the sequence they saw dur-
ing the training session. This task may be thought of as a
recall task adapted to the case of sequential materials (for
a detailed analysis of the resulting data, see Perruchet &
Amorim, 1992). However, other instructions are possible.
Participants may be told to generate the first sequence
that comes to mind, and, in this case, the generation task
becomes a nominally implicit task. In the case of cued or
trial-by-trial generation tasks, additional cues are given
to the participants, whose task is to produce the correct
continuation response in the sequence. If performance is
at chance, this indicates that participants have learned im-
plicitly. However, there is much evidence that participants
are able to generate the learned sequence, suggesting that
learning requires at least some explicit knowledge (Per-
ruchet & Amorim, 1992; Shanks & Johnstone, 1999).

The use of this kind of generation task does not show
the researcher whether good performance is due only to
explicit knowledge or is partly mediated by implicit knowl-
edge. In order to measure the respective contributions of
implicit and explicit knowledge, the process dissociation
procedure (PDP) initially implemented by Jacoby (1991)
can be used. By varying the instructions given to partici-

depends on the proportion of transfer elements introduced
during training. For instance, Schvaneveldt and Gomez
(1998) reported that they had failed to obtain a reliable
performance improvement with 20% of transfer trials with
SOC sequences, but that they were successful with 10%.
Shanks et al. (2006) reported quick learning of SOC se-
quences with 15% of transfer elements—even in amnesic
patients. The fact that the repetition structure is less salient
is often interpreted as an advantage, with the idea that the
difficulty of detecting the repetition structure may disrupt
the explicit mode of learning (e.g., Shanks et al., 2006).
An additional advantage of probabilistic sequences is that
they may be more representative of sequential events in
the real world (Hunt & Aslin, 2001).

The Number of Trials per Block and
the Number of Blocks

As a rule, the whole training session is divided into
blocks of about 100 trials separated by self-paced pauses.
The exact number of trials per block often depends on
particularities of the repeated sequence. For instance, with
12-element sequences, the length of the block may be set
to 96, in order to include eight full sequences. It is also
possible to add a few random trials at the beginning of
each block, in order to make the repetition structure less
salient. The number of blocks is more difficult to select.
It depends on the nature of the repeated sequence, the
sample of participants, the objective of the researchers,
and so on. However, it is worth stressing that studies using
a small number of blocks (e.g., Perruchet et al., 1997) or
using probabilistic sequences that allow the elaboration of
learning curves (e.g., Shanks et al., 2006) have revealed
that learning emerges very early during the session, and
often does not improve with further practice. Of course,
this does not mean that further practice does not induce
any changes. It is possible, for instance, that performance
in subsequent tests of explicit knowledge depends on the
amount of practice. However, if the main objective of the
researchers is to give evidence of implicit learning through
RT measures, using only a few blocks of trials may be suf-
ficient. For instance, with SOC sequences, three or four
100-trial blocks appear sufficient for getting evidence of
reliable learning.

The Response–Stimulus interval (RSi)
Most SRT studies have used RSIs around 200 or

250 msec. However, a few studies have used longer inter-
vals. For instance, Frensch, Buchner, and Lin (1994) used
RSIs of up to 1,500 msec and still observed learning. On
the other hand, a few studies have used a 0-msec RSI, with
various outcomes. Perruchet et al. (1997) reported no RT
improvement with intact explicit knowledge; Destrebecqz
and Cleeremans (2001) reported an exactly inverse pat-
tern; and Shanks et al. (2006) reported improved per-
formance both on RTs and on tests of explicit learning.
Because these empirical results do not provide us with
reliable guidelines for a choice, it may be better to start
from theoretical considerations. It may be thought that a
long RSI gives participants the opportunity of elaborating
conscious strategies, rehearsing the sequence, or engaging

GSrt-Soft 501

for their help at various stages of elaboration. Correspondence concern-
ing this article should be addressed to S. Chambaron, Cognitive Science
Research Unit, Université Libre de Bruxelles, Av. F. D. Roosevelt, 50, CP
191, 1050 Brussels, Belgium (e-mail: schambar@ulb.ac.be).

RefeReNCeS

Berry, D. C., & Broadbent, D. E. (1984). On the relationship between
task performance and associated verbalizable knowledge. Quarterly
Journal of Experimental Psychology, 36A, 209-231.

Bischoff-Grethe, A., Goedert, K. M., Willingham, D. T., & Grafton,
S. T. (2004). Neural substrates of response-based sequence learning
using fMRI. Journal of Cognitive Neuroscience, 16, 127-138.

Chambaron, S., Ginhac, D., & Perruchet, P. (2006). Is learning in
SRT tasks robust across procedural variations? In R. Sun & N. Miyake
(Eds.), Proceedings of the 28th Annual Conference of the Cognitive
Science Society (pp. 148-153). Mahwah, NJ: Erlbaum.

Cleeremans, A. (1993). Attention and awareness in sequence learning.
In Proceedings of the 15th Annual Conference of the Cognitive Sci-
ence Society (pp. 330-335). Hillsdale, NJ: Erlbaum.

Cleeremans, A. (1995). Implicit learning in the presence of multiple
cues. In Proceedings of the 17th Annual Conference of the Cognitive
Science Society (pp. 298-303). Mahwah, NJ: Erlbaum.

Cleeremans, A., & McClelland, J. L. (1991). Learning the structure
of event sequences. Journal of Experimental Psychology: General,
120, 235-253.

Cohen, A., Ivry, R. I., & Keele, S. W. (1990). Attention and structure
in sequence learning. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 16, 17-30.

Curran, T. (1997). Effects of aging on implicit sequence learning: Ac-
counting for sequence structure and explicit knowledge. Psychologi-
cal Research, 60, 24-41.

Curran, T., & Keele, S. W. (1993). Attentional and nonattentional
forms of sequence learning. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 19, 189-202.

Deroost, N., & Soetens, E. (2006). Spatial processing and perceptual
sequence learning in SRT tasks. Experimental Psychology, 53, 16-30.

Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning
be implicit? New evidence with the process dissociation procedure.
Psychonomic Bulletin & Review, 8, 343-350.

Destrebecqz, A., & Cleeremans, A. (2003). Temporal effects in se-
quence learning. In L. Jiménez (Ed.), Attention and implicit learning
(pp. 181-213). Amsterdam: John Benjamins.

Frensch, P. A., Buchner, A., & Lin, J. (1994). Implicit learning of
unique and ambiguous serial transitions in the presence and absence
of a distractor task. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 20, 567-584.

Goschke, T., & Bolte, A. (2007). Implicit learning of semantic cat-
egory sequences: Response-independent acquisition of abstract se-
quential regularities. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 33, 394-406.

Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation:
Evidence from a serial reaction time task. Quarterly Journal of Ex-
perimental Psychology, 55A, 593-607.

Howard, D. V., & Howard, J. H., Jr. (1989). Age differences in learn-
ing serial patterns: Direct versus indirect measures. Psychology &
Aging, 4, 357-364.

Howard, J. H., Jr., & Howard, D. V. (1997). Age differences in implicit
learning of higher order dependencies in serial patterns. Psychology
& Aging, 12, 634-656.

Hunt, R. H., & Aslin, R. N. (2001). Statistical learning in a serial reac-
tion time task: Access to separable statistical cues by individual learn-
ers. Journal of Experimental Psychology: General, 130, 658-680.

Jacoby, L. L. (1991). A process dissociation framework: Separating
automatic from intentional uses of memory. Journal of Memory &
Language, 30, 513-541.

Jiménez, L., Méndez, C., & Cleeremans, A. (1996). Comparing direct
and indirect measures of sequence learning. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 22, 948-969.

Kotchoubey, B., Haisst, S., Daum, I., Schugens, M., & Birbaumer, N.
(2000). Learning and self-regulation of slow cortical potentials in older
adults. Experimental Aging Research, 26, 15-35.

McDowall, J., & Martin, S. (1996). Implicit learning in closed head

pants, the procedure is aimed at dissociating conscious and
automatic influences. In the inclusion task, participants are
asked to generate the learned sequence by remembering it
as clearly as possible. The exclusion task, however, requires
participants to avoid generating the regularities embedded
in the learned sequence. Destrebecqz and Cleere mans
(2001, 2003) were the first to conduct a series of experi-
ments applying the PDP to SRT tasks. They demonstrated
that, under certain circumstances, participants could not
avoid reproducing the learned sequence, despite having
been instructed not to do so.

Generation tasks are not implemented in the current
release of gSRT-Soft. Nevertheless, actual development
of the gSRT-Soft focuses on the implementation of a
free generation task and a trial-by-trial generation task.
Moreover, these two tasks could be used with inclu-
sion and exclusion instructions. In the case of the free
generation task, participants will be instructed to freely
generate the learned sequence (inclusion condition)
or to generate a different sequence (exclusion condi-
tion). In the case of the trial-by-trial generation task,
participants will be asked to respond to a five-element
sequence and to produce the sixth element. In the inclu-
sion condition, participants are instructed by a green
question mark displayed on the screen to produce the
next element of the training sequence. In the exclusion
condition, participants have to generate a different con-
tinuation response. In this case, a red question mark will
appear on the screen.

Further releases of gSRT-Soft that include these new
features will soon be available.

SummARy

In short, the gSRT-Soft should allow the user to run
sequence-learning experiments quite easily and with ex-
cellent time accuracy. Obviously, the value of the results
will depend on the care with which each researcher plans
his or her research. We have provided some guidelines
for designing experiments involving standard paradigms.
There is no doubt that SRT studies, and learning studies in
general, raise tricky methodological problems when new
issues are explored. We hope that the capabilities of the
software will encourage researchers to investigate unex-
plored directions of research in learning.

Evaluation copies of gSRT-Soft may be obtained free
of charge by contacting the authors. Future releases of
gSRT-Soft will be published as free software under the
terms of the general public license (see www.gnu.org for
more details about the GPL). Binary software and source
code of the SRT task software will be available from a
dedicated Web site. The authors of gSRT-Soft ask that
publications involving the use of the original or modified
versions of the software cite this article.

AuThOR NOTe

This work was supported by the Centre National de la Recherche
Scientifique (CNRS, UMR 5158 and UMR 5022), the Université de
Bourgogne (LE2I and LEAD), and the Region de Bourgogne (AAFE).
The authors also thank Axel Cleeremans and the anonymous reviewers

502 Chambaron, GinhaC, and PerruChet

Shanks, D. R., Channon, S., Wilkinson, L., & Curran, H. V. (2006).
Disruption of sequential priming in organic and pharmacological
amnesia: A role for the medial temporal lobes in implicit contextual
learning. Neuropsychopharmacology, 31, 1768-1776.

Shanks, D. R., & Johnstone, T. (1999). Evaluating the relationship
between explicit and implicit knowledge in a sequential reaction time
task. Journal of Experimental Psychology: Learning, Memory, &
Cognition, 25, 1435-1451.

Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable
human learning systems. Behavioral & Brain Sciences, 17, 367-447.

Shanks, D. R., Wilkinson, L., & Channon, S. (2003). Relationship
between priming and recognition in deterministic and probabilistic
sequence learning. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 29, 248-261.

Smith, J., Siegert, R. J., McDowall, J., & Abernethy, D. (2001).
Preserved implicit learning on both the serial reaction time task and
artificial grammar in patients with Parkinson’s disease. Brain & Cog-
nition, 45, 378-391.

Stevens, A., Schwarz, J., Schwarz, B., Ruf, I., Kolter, T., & Cze-
kalla, J. (2002). Implicit and explicit learning in schizophrenics
treated with olanzapine and with classic neuroleptics. Psychopharma-
cology, 160, 299-306.

Stöcker, C., Sebald, A., & Hoffmann, J. (2003). The influence of
response-effect compatibility in a serial reaction time task. Quarterly
Journal of Experimental Psychology, 56A, 685-703.

Vinter, A., & Perruchet, P. (2000). Implicit learning in children is not
related to age: Evidence from drawing behavior. Child Development,
71, 1223-1240.

Wilkinson, L., & Shanks, D. R. (2004). Intentional control and im-
plicit sequence learning. Journal of Experimental Psychology: Learn-
ing, Memory, & Cognition, 30, 354-369.

Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the
development of procedural knowledge. Journal of Experimental Psy-
chology: Learning, Memory, & Cognition, 15, 1047-1060.

Ziessler, M., & Nattkemper, D. (2001). Learning of event sequences
is based on response-effect learning: Further evidence from a serial re-
action task. Journal of Experimental Psychology: Learning, Memory,
& Cognition, 27, 595-613.

Zillmer, E. A., & Spiers, M. V. (2001). Principles of neuropsychology.
Belmont, CA: Wadsworth.

(Manuscript received May 9, 2007;
revision accepted for publication December 21, 2007.)

injured subjects: Evidence from an event sequence learning task. New
Zealand Journal of Psychology, 25, 1-6.

Meulemans, T., Van der Linden, M., & Perruchet, P. (1998). Im-
plicit sequence learning in children. Journal of Experimental Child
Psychology, 69, 199-221.

Myors, B. (1999). Timing accuracy of PC programs running under DOS
and Windows. Behavior Research Methods, Instruments, & Comput-
ers, 31, 322-328.

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of
learning: Evidence from performance measures. Cognitive Psychol-
ogy, 19, 1-32.

Norman, E., Price, M. C., Duff, S. C., & Mentzoni, R. A. (2007).
Gradations of awareness in a modified sequence learning task. Con-
sciousness & Cognition, 16, 809-837.

Osman, M., Bird, G., & Heyes, C. (2005). Action observation supports
effector-dependent learning of finger movement sequences. Experi-
mental Brain Research, 165, 19-27.

Perruchet, P., & Amorim, M.-A. (1992). Conscious knowledge and
changes in performance in sequence learning: Evidence against dis-
sociation. Journal of Experimental Psychology: Learning, Memory,
& Cognition, 18, 785-800.

Perruchet, P., Bigand, E., & Benoit-Gonin, F. (1997). The emer-
gence of explicit knowledge during the early phase of learning in se-
quential reaction time tasks. Psychological Research, 60, 4-13.

Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical
learning: One phenomenon, two approaches. Trends in Cognitive Sci-
ences, 10, 233-238.

Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of
Verbal Learning & Verbal Behavior, 5, 855-863.

Reed, J., & Johnson, P. (1994). Assessing implicit learning with in-
direct tests: Determining what is learned about sequence structure.
Journal of Experimental Psychology: Learning, Memory, & Cogni-
tion, 20, 585-594.

Salthouse, T. A., McGuthry, K. E., & Hambrick, D. Z. (1999). A
framework for analyzing and interpreting differential aging patterns:
Application to three measures of implicit learning. Aging, Neuropsy-
chology, & Cognition, 6, 1-18.

Schvaneveldt, R. W., & Gomez, R. L. (1998). Attention and probabi-
listic sequence learning. Psychological Research, 61, 175-190.

Shanks, D. R. (2003). Attention and awareness in “implicit” se-
quence learning. In L. Jiménez (Ed.), Attention and implicit learning
(pp. 11-42). Amsterdam: John Benjamins.

Shanks, D. R. (2005). Implicit learning. In K. Lamberts & R. Goldstone
(Eds.), Handbook of cognition (pp. 202-220). London: Sage.

