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Abstract

The present study investigated the minimum amount of auditory stimulation that allows differentiation of spoken voices,
instrumental music, and environmental sounds. Three new findings were reported. 1) All stimuli were categorized above
chance level with 50 ms-segments. 2) When a peak-level normalization was applied, music and voices started to be
accurately categorized with 20 ms-segments. When the root-mean-square (RMS) energy of the stimuli was equalized, voice
stimuli were better recognized than music and environmental sounds. 3) Further psychoacoustical analyses suggest that the
categorization of extremely brief auditory stimuli depends on the variability of their spectral envelope in the used set. These
last two findings challenge the interpretation of the voice superiority effect reported in previously published studies and
propose a more parsimonious interpretation in terms of an emerging property of auditory categorization processes.
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Introduction

Event recognition in everyday life can be triggered by very brief

stimuli. In the auditory modality, Grosjean’s gating experiments

demonstrated that spoken words can be recognized after 240 ms

[1]. In this paradigm, participants were presented with voice

stimuli of increasing duration, which they have to recognize.

Effects of voice familiarity [2], voice gender [3], human versus

computer voice [4], voice repetition priming [5], speech versus

musical tones [6], speaker identity [7] and voice expression [8]

(also see [9]) have been observed for stimuli with durations

between 150 ms to 200 ms. Fast processing for perceiver-relevant

stimuli, such as faces or voices, was claimed to rest on highly

specialized pathways ([10,11] for faces; [12–17] for voices).

Evidence for an advantage of voice processing was also reported

with ERP measurements. Brain responses to vocalizations (mostly

human) were distinguishable from responses to sounds from man-

made auditory objects 70 ms after stimulus onset [18]. In this last

study, musical sounds were part of the category of man-made

objects, and they had not been analyzed separately. In another

study, human vocalizations (73 speech items, 77 vocalizations),

and other every-day life sounds (30 natural sounds, 60 instruments

and 60 mechanical sounds) led to different ERP responses [19]. It

was reported that as early as 164 ms post-stimulus-onset, the

amplitudes of ERPs at fronto-temporal electrodes were consis-

tently larger for voices than for bird songs and environmental

sounds. At 200 ms, the electrophysiological response to voices

reached nearly twice the amplitude of the ERPs to the other sound

types. These findings have provided evidence for an early

electrophysiological response to human voices, referred to as the

‘‘fronto-temporal positivity to voices’’ (FTPV), which is compara-

ble to the well-known face preferential N170. Note that in this

study [19], instrumental sounds were also included in the large

category of environmental sounds and were not directly compared

with vocalizations. Finally, sung voices and musical instrument

sounds (e.g., violin, alto, cello, and brass) were found to be

distinguishable from each other in ERP responses 320 ms after

stimulus onset, notably in a fronto-central distribution [20]. This

component was called the ‘‘voice-specific response’’.

Up to now, specialized pathways for environmental sounds have

not been identified yet, but some authors have suggested that

music might be processed by dedicated modules [21,22]. Some

aspects of music processing were actually found to occur in an

extremely fast and automatic way. The most astonishing finding

was that musical excerpts of a duration of 100 ms allowed the

identification of five famous pop tunes [23]. When an open set of

tunes is used, participants can differentiate familiar versus

unfamiliar music for excerpts as short as 500 ms [24,25], and

100 ms [26]. To the best of our knowledge, only one single

behavioral study has compared the temporal dynamics of music

and voice processing [27]. Sung vowels and musical instrument

sounds (bassoon, clarinet, oboe, piano, saxophone, and percussion)

were used, in both reaction time and gating experiments. In a

‘‘go/no go’’ recognition task, responses to sung vowels as target

stimuli were faster than responses to percussion and strings as

targets. However, as other instrumental sounds (i.e., bassoon,

oboe, and saxophone) were used as distractor items, this finding

did not necessarily demonstrate a voice-processing advantage. A

more parsimonious account suggests that the acoustic distances

between target and distractors were stronger when sung voices
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defined the targets than when percussion or strings defined the

targets. In addition, it remains difficult to generalize the conclusion

of this study to everyday-life sounds. Sung vowels are weakly

representative of spoken voice, and isolated musical sounds (e.g.,

tones) are weakly representative of music.

All of these studies lead to the conclusion that auditory

categorization can be achieved on the basis of very little

information, notably for voices. These findings may be understood

within two different theoretical frameworks. According to a

modular approach, the processing of voice is domain-specific

and rests on highly specialized pathways [12–17,27]. A modular

process acts in a fast and automatic way [28], which leads to an

advantage of voice processing. An alternative framework proposes

that auditory stimuli are processed by general perceptual

categorization mechanisms that rest on the analysis of the

distribution of their perceptual features (e.g., [29,30]; see also

[31,32] for a similar proposal in the visual domain). Within this

framework, a processing advantage for a given class of sounds may

be the consequence of the distances and the variability of the

perceptual features of the exemplars used in the experimental

setting.

Our present study used a gating procedure to further assess the

specificity of the processes that govern auditory categorization.

Compared to previous studies, we compared three classes of

everyday-life sounds (voices, musical sounds, and environmental

sounds). The goal was to identify the minimum duration allowing

the differentiation of these categories of sounds. Moreover, we

investigated the effect of two types of amplitude normalization

(peak-level and RMS normalization). Studies reporting a voice

superiority effect [27], as well as those investigating the neural

sensitivity to human voices (e.g., [14,19,20]) used the RMS

normalization. Up to now, no study has compared the RMS

normalization with other normalization types, such as the Peak-

level normalization, which is another commonly used normaliza-

tion procedure. Comparing two normalization procedures has

implications for the two alternative frameworks presented above

(i.e., modular versus general perceptual categorization). A modular

approach of sound processing could hardly predict an effect of

amplitude normalization. By contrast, a general categorization

process could anticipate such an effect by considering how it

modulates the distance and distribution of perceptual features

within and between sound categories (here, the exemplars used in

the experimental setting).

Materials and Methods

Participants
Thirty-seven first-year psychology students of the University of

Bourgogne participated in the experiment. They were 18 to 25

years old, none reported any auditory deficit, and none had formal

training in music. Eighteen participants were assigned to the Peak-

normalization condition, and 19 participants to the RMS-

normalization condition.

Ethics Statement
The study was performed in a pedagogical context, in which

students, in exchange for course credits, have to participate in a

non-invasive laboratory experiment, to further their understanding

of experimental psychology. Informed written consent was

obtained from all participants prior to taking part in the

experiment. The study was anonymous and fully obeyed to the

Helsinki Declaration, Convention of the Council of Europe on

Human Rights and Biomedicine.

Stimuli
Auditory samples of 30 s duration were selected in the following

way. Samples of instrumental classical music belonging to the

classic and romantic symphonic repertoires (see Table S1) were

selected. As classical and romantic symphonic music are sub-

categories of music, a similar sub-categorization was applied to the

samples of human voices. Single spoken voices of man and female

speakers were recorded from FM French radio. A subset of

environmental sounds (referred to as ESounds here below) was

selected from various audio CDs. All these sounds had high

probability of occurrence in our everyday-life environment (see

[33]). Peak normalization was applied to all auditory samples

before being segmented in short excerpts (defining the ‘‘Peak-

normalization’’ condition). This segmentation was performed by

an home-made algorithm implemented in Matlab, which

randomly selected experimental excerpts with durations of

20 ms, 30 ms, 50 ms, 100 ms and 200 ms. Silent or quasi silent

excerpts were removed. In the ‘‘RMS-normalization’’ condition,

the short excerpts further received a Root Mean Square (RMS)

normalization for amplitude. Twenty excerpts for each category of

sounds (3) were used in each duration condition (5), generating 300

(206365) stimuli. Each participant heard the 300 stimuli played

through SENNHEISER headphones.

Procedure
Participants were invited to classify the stimuli in three main

categories of sounds: Human voice, musical and environmental

sounds (ESounds). The experiment was performed by blocks,

starting by presenting all stimuli of 20 ms (in a random order),

then continuing without pause with all stimuli of 30 ms and so on

up to the 200 ms stimuli. There was neither a training phase nor

response feedback.

Results

Behavioral data
All participants complained about the difficulty of the task, and

most of them reported that voices were the most easily

recognizable sounds. In order to analyze their performance, an

index of accuracy [34] was defined by Hit/N – FA/(Nx2), with N

being the number of items in each category for a given stimulus

duration (N = 20 in this study). The accuracy for voice was thus:

(Hits for voice)/20 – (FAs for voice)/40, the chance level being 0

(i.e., equal rates of Hits and FAs). The same calculation was

applied for musical sounds and environmental sounds. As

displayed in Figure 1, accuracy increased with duration,

approaching the maximum value for 200 ms-stimuli. A 5

(Duration)63 (Sound category)62 (Normalization condition)

ANOVA was performed with the first two factors as the within-

subject variables, and the last one, as the between-subjects factor.

Greenhouse-Geisser correction was used for the repeated measure

analysis. Accuracy increased with duration, F(2.93,

102.38) = 260.46, MSE = 10.56, p,.0001. An increase of 10 ms

in duration, between 20 ms and 30 ms, was sufficient to

significantly improve performance for all sound categories, F(1,

35) = 84.97, MSE = 4.00, p,.0001. The other increments in

duration had a more moderate impact, but all reached statistical

significance (all ps,.0001). The main effect of sound category was

also significant, F(1.69, 59.09) = 87.04, MSE = 1.77, p,.0001, with

higher accuracy for music and voice stimuli than for ESounds, F(1,

35) = 274.18, MSE = 3.24, p,.01. This effect of sound category

was more pronounced for some durations, as revealed by a

significant interaction between sound category and duration,

F(4.93, 172.30) = 3.05, MSE = 0.05, p,.02. There was also a main

Categorization of Extremely Brief Auditory Stimuli
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effect of normalization, with lower performance in the RMS-

normalization condition, F(1, 35) = 20.17, MSE = 4.01, p,.0001.

Interestingly, the three-way interaction was significant, F(4.92,

172.30) = 2.38, MSE = 0.04, p,.05: A voice superiority effect was

found in the RMS-normalization condition only, with higher

accuracy for voices than environmental and musical sounds, for

durations longer than 20 ms (F(1, 35) = 90.88, MSE = 2.21,

p,.001). In comparison to the Peak-normalization condition, the

RMS-normalization reduced accuracy more strongly for environ-

mental and musical sounds than for voices at durations greater

than 20 ms, F(1, 35) = 18.29, MSE = 0.44, p,.001. For both

normalization conditions, ESounds remained the most difficult

sound source to recognize.

A striking finding was that voices and music were recognized

above chance level at 20 ms (t(17) = 1.83, p = .08; t(17) = 3.02,

p,.01, respectively) in the Peak-normalization condition, and at

30 ms in the RMS-normalization condition (t(18) = 3.9, p,.001;

t(18) = 2.96, p,.01, for voice and music respectively). Recognition

of ESounds was above chance level at 30 ms in the Peak-

normalization condition, t(17) = 8.66, p,.0001, and 50 ms in the

RMS-normalization condition, t(18) = 5.33, p,.0001.

Table 1 presents the percentages of labels chosen for each

category of sounds, that is correct categorizations and mistaken

categorizations (false alarms, FAs). We analyzed FAs given for

each sound category with a 362 ANOVA (with Sound category as

within-subject factor and Normalization condition as between-

subjects factor). In addition to main effects of Sound category

(F(1.58, 55.16) = 22.1, MSE = 1846.8, p,.001) and Normalization

(F(1, 35) = 18.8, MSE = 3556.2, p,.001), this analysis confirmed

an interaction between the Sound category and Normalization

(F(1.58, 55.16) = 3.84, MSE = 321.2, p,.05). Even though RMS-

normalization increased the number of FAs for all categories (in

comparison to the Peak-normalization), the FA-rate for voice

(35%) in the RMS-normalization condition was inferior to that for

Esounds (48%) and music (41%), F(1, 35) = 19.82, MSE = 1618.5,

p,.001 and F(1, 35) = 6.05, MSE = 284.6, p,.05, respectively.

This analysis of correct categorization and mistaken categorization

(False Alarms) suggests that the RMS-normalization of amplitude

modulated the perceptual distance between the three categories,

with RMS-normalization increasing the perceptual distance

between voice and the two other categories.

Auditory modeling of the stimulus set
To further address this issue, auditory modeling of the set of

stimuli was performed with a cochlear model [35], and a Principal

Component Analysis (PCA) was run with the outcome of this

Figure 1. Participants’ accuracy in the Peak-normalization (A) and RMS-normalized amplitude (B) conditions as a function of
duration and sound category. Error bars represent the 95% confidence intervals of the mean. Inserts display the outcome of a PCA of the
excitation patterns of all stimuli of all durations of Peak-normalization and RMS-normalization conditions. The center of each cluster indicates the
barycenter within the PCA space, the horizontal and vertical lengths of the ellipses indicate the standard deviation of the items, on the first and
second principal components, respectively. E refers to ESounds, M to musical sounds, V to voices, and PC to principal component. See Figure S1 for
projection of the stimuli onto the PCA space as a function of stimulus duration.
doi:10.1371/journal.pone.0027024.g001

Table 1. Percentages (%) of labels chosen for each category
of sounds in the Peak-normalization (A) and RMS-
normalization (B) conditions.

Peak-normalization RMS-normalization

Response Response

Stimulus E M V E M V

E 60 24 16 52 31 17

M 15 77 8 27 59 14

V 19 9 72 21 14 65

Bolds characters represent Hits (correct labels) and the other numbers represent
False Alarms (errors, i.e., mistaken one category for another).
doi:10.1371/journal.pone.0027024.t001

Categorization of Extremely Brief Auditory Stimuli
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analysis (performed on the entire set of stimuli). Specifically, the

spectral envelope of each stimulus was split into 80 frequency

bands using a gammatone filterbank [35] that simulates the

frequency analysis performed by the cochlea. The RMS power

was measured for each auditory filter, producing a so-called

excitation pattern evoked by a given sound. Figure 2 shows the

mean excitation patterns (and 95% confidence intervals) for each

stimulus set average over all durations, for Peak-normalization (A)

and RMS-normalization (B) conditions.

A global PCA of the excitation patterns of all stimuli of all

durations of Peak-normalization and RMS-normalization condi-

tions was run. The first two principal components accounted for

26% and 22% of the variance of the excitation patterns of the

stimuli, and the remaining variance gradually decreased over the

next components (i.e., 10%, 6%, 5%, 4%…). The obtained circle

of correlation, which represents the projection of the original

variables (i.e., the 80 frequency bands) on the PCA space, revealed

that frequency bands centered at 1000 Hz and 247 Hz contrib-

uted the most to the principal components 1 and 2, respectively.

As can been seen in Figure 2, these two frequency bands actually

allow distinguishing the excitation patterns of the three sound

categories, in the two normalization conditions. Hence, in the

PCA space, the first two principal components allowed distin-

guishing the three types of sounds (Figure 1-left and 1-right,

inserts). As illustrated by the size of the ellipses in Figure 1 (inserts),

which indicates the standard deviations of the distribution for each

sound category (on the first and second principal components,

respectively), music and voice were found to have a lower spectral

envelope variability compared to ESounds. Music and voice

categories did not overlap. This can explain why sounds of both

categories were weakly mistaken. However, music and voices

overlapped with ESounds, for which they were mistaken (see

Table 1). The outcome of the PCA changed depending on the

normalization conditions in an interesting way. RMS-normaliza-

tion increased the spectral distance between voice and ESounds,

and had no effect on the distance between music and ESounds.

The voice superiority effect observed in the RMS-normalization

condition can thus be accounted for by an increased distance

between voice and ESound categories and the removed overlap

between these categories. The projection of the three sound

categories on the global PCA space run separately for each

condition of duration (see Figure S1) demonstrated that the

difference in spectral variability of the three sound categories and

their distance was weakly affected by the duration of the stimuli.

This suggests that the stimuli contained enough acoustic

information to potentially allow perceptual categorization, even

at the shortest durations.

Multiple regression analyses were run to assess the influence of

the spectral distributions and distances within the PCA space on

response accuracy. The following predictors were entered in the

regression models: 1) within-category distances (the average

Euclidean distance of each item to the other members of its

category), 2) between-category distances (average distance of each

item of a given category to the members of the two other

categories), and 3) the duration of the stimuli. In the Peak-

normalization, we also entered the mean RMS power of each

stimulus.

In the Peak-normalization condition, the four predictors

accounted for 43% of the variance (adjusted R2 = .43, F(4,

595) = 112.34, p,.01, SSE = 21.79). Not surprisingly, there was

a strong contribution of duration (b= .42, p,.01). Most interest-

ingly, the within- and between- category distances contributed the

most to the accuracy data (b= 2.71, p,.01 and b= .32, p,.01,

respectively): The smaller the distance with the actual category of

the stimulus (within-category) and the bigger the distance with the

stimuli of the other categories, the higher the accuracy. In

Figure 2. Average excitation patterns and 95% confidence intervals (indicated by dotted lines) for each set of stimuli, for the Peak-
normalization (A) and RMS-normalized amplitude (B) conditions.
doi:10.1371/journal.pone.0027024.g002

Categorization of Extremely Brief Auditory Stimuli

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e27024



addition, RMS amplitude provided a small contribution to the

data (b= .26, p,.01): The louder the sounds, the higher the

accuracy. In the RMS-normalization condition, the three

predictors accounted for 48% of the variance in accuracy (adjusted

R2 = .48, F(3, 596) = 182.37, p,.01, SSE = 18.03). There was

again a strong contribution of the duration (b= .44, p,.01). The

within-category and between-category distances contributed

slightly, but significantly (b= 2.10, p,.01 and b= .06, p,.05,

respectively).

Discussion

The present study demonstrates that sound categorization

requires very little information. Up to now, this ability for

processing reduced information of stimuli was mostly reported for

the visual modality. The present findings are consistent with

recent studies in auditory perception showing that less than

500 ms of sound is sufficient to recognize familiar tunes ([23]), to

evaluate the emotion of music and even to identify the label of the

pieces ([24,36]). Our results went even one step further by

showing that after 20 ms, sound categorization started to be

above chance level, and accuracy was high for all sounds at

50 ms. This finding is striking given that the ecologically valid

stimuli used in the experiment were cut at random places out of

the original auditory signals. Moreover, none of the participants

reported a specific expertise in auditory perception (e.g., music or

sound engineering), and no training session was performed before

the task. A further astonishing finding was that an increase of

10 ms in the auditory signal drastically boosts participants’

performance.

The second contribution of the present study concerns the

processes involved in the categorization of extremely brief

stimuli. Neuroscience research has provided several arguments

for human voice detectors, rooted in specialized neural

pathways. Specialized detectors have several computational

advantages compared to general systems. One of them is to

respond in an automatic and fast way to stimuli they are

specialized to detect. Processing advantages should thus be found

for human voice processing, when compared to other auditory

stimuli. Accordingly, better accuracy for voice stimuli was

expected, notably at shortest durations. Most of the participants

reported that voice stimuli were the sounds that were the easiest

to-be-recognized. However, an advantage for voice stimuli was

confirmed only in the RMS-normalization condition. Our study

is the first one to document an effect of the RMS normalization

procedure. Our data showed that RMS normalization had a

strong detrimental effect on performance for all types of sounds,

and modulated the way some categories of sounds can be

recognized. In particular, the RMS normalization had a stronger

detrimental effect for ESounds and music than for voice; and this

led to a voice superiority effect only in the RMS-normalization

condition.

It might be argued that the voice superiority effect observed in

the RMS-normalization condition could be interpreted as an

argument for voice-specialized pathways, as suggested by other

studies. The fact that this finding was not replicated in the Peak-

normalization condition could suggest that the lack of RMS

normalization obscures the voice superiority effect. The mech-

anism that may ‘‘obscures’’ the voice superiority effect remains

however unclear. If loudness were an important cue for

perceptual categorization, the difference in loudness in stimuli

should provide a strong contribution to participants’ accuracy in

the regression model. However, this was not the case. An

alternative explanation is to consider that the processing

advantage was only found in the RMS normalization condition,

because it is a by-product of general categorization processes,

which consider the distribution of the spectral envelope of the

stimuli. This approach is more parsimonious as it does not

require domain-specific processors, and it provides an alternative

account of our entire data pattern. A critical finding along this

line was the observation that the RMS normalization modified

the distribution of spectral envelopes in a way that was

significantly related to the changes in accuracy between the two

normalizations conditions. As revealed by the regression analyses,

the within-category distance provided the strongest contribution

to human data - and in particular stronger than loudness

(estimated by the average RMS energy) - in the Peak-

normalization condition. Moreover, when the amplitude was

RMS normalized, the within- and between-category distances

contributed significantly to the data. This suggests that the

distribution of perceptual features of the stimuli is a key

determinant of auditory categorization, which can lead to a

processing facilitation for voices in some loudness normalization

conditions.

The present findings thus have methodological and theoretical

implications. First, they reveal the necessity to control for the

distribution of perceptual features of the stimulus set in order to

be sure that a processing advantage for a given class of stimuli

points to a specialized neural network. Given that most of the

currently available studies did not provide this type of analysis, it

is not possible to reject the more parsimonious interpretation that

participants were responding on the basis of acoustic variability

only. Second, given that the voice superiority effect has been

reported with RMS-normalized sounds (e.g., [20,27]), one might

wonder about the adaptive advantage of this specialized network,

if it turns out that this advantage is only observed for RMS-

normalized stimuli. This advantage would thus be limited to

material used in laboratory experiments. Our data do not deny

the existence of specialized pathways for voice processing, but

they point out that the processing advantage of this specific

pathway for voice perception in everyday-life remains to be

demonstrated.

Supporting Information

Figure S1 Projection of the experimental stimuli for the
Peak-normalization (A) and RMS-normalized (B) condi-
tions onto the PCA space, as a function of the stimulus
duration. The center of each cluster indicates the barycenter

within the PCA space, the horizontal and vertical lengths of the

ellipses indicate the standard deviation of the items, on the first

and second principal components, respectively. E refers to

ESounds, M to musical sounds and V to voices.

(TIF)

Table S1 List of pieces from which musical sounds were
extracted.

(DOC)
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Electrophysiological evidence for an early processing of human voices. BMC

Neuroscience 10: 127.

20. Levy D, Granot R, Bentin S (2001) Processing specificity for human voice

stimuli: electrophysiological evidence. Neuroreport 12: 2653–2657.

21. Peretz I, Morais J (1989) Music and modularity. Contemporary Music Review 4:

227–291.

22. Peretz I, Coltheart M (2003) Modularity of music processing. Nature

Neuroscience 6: 688–691.

23. Schellenberg EG, Iverson P, McKinnon M (1999) Name that tune: Identifying

popular recordings from brief excerpts. Psychonomic Bulletin & Review 6:

641–646.

24. Filipic S, Tillmann B, Bigand E (2010) Judging familiarity and emotion from

very brief musical excerpts. Psychonomic Bulletin & Review 17: 335–341.

25. Krumhansl CL (2010) Plink: ‘‘Thin Slices’’ of Music. Music Perception 27:

337–354.

26. Bigand E, Gérard Y, Molin P (2009) The contribution of local features to

familiarity judgments in music. Annals of the New York Academy of Sciences

1169: 234–244.

27. Agus TR, Suied C, Thorpe SJ, Pressnitzer D (2010) Characteristics of human

voice processing. IEEE International Symposium on Circuits and Systems.

28. Fodor J The Modularity of Mind: An Essay on Faculty Psychology: MIT Press.
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