
Learning to perceive time: A connectionist, memory-decay model of the 
development of interval timing in infants.

Caspar Addyman (c.addyman@bbk.ac.uk), 
Robert M. French (robert.french@u-bourgogne.fr) 

LEAD-CNRS UMR 5022, Place Erasmus
Université de Bourgogne, 21000 Dijon, France

Denis Mareschal (d.mareschal@bbk.ac.uk)
CBCD, Department of Psychological Sciences, Birkbeck,

University of London, Malet Street, London, WC1E 7HX, UK

Elizabeth Thomas (elizabeth.thomas@u-bourgogne.fr)
INSERM U887, Motricité et Plasticité

Université de Bourgogne, 21000 Dijon, France

Abstract

We  present  the  first  developmental  model  of  interval 
timing. It is a memory-based connectionist model of how 
infants learn to perceive time. It has two novel features 
that  are  not  found in other   models.  First,  it  uses  the 
uncertainty of a memory for an event as an index of how 
long ago that event happened. Secondly, embodiment – 
specifically,  infant  motor  activity  –  is  crucial  to  the 
calibration  of  time-perception  both  within  and  across 
sensory modalities. We describe the model and present 
three simulations which show (1)  how it uses sensory 
memory uncertainty and bodily representaions to index 
time,  (2)  that  the  scalar  property  of  interval  timing 
(Gibbon, 1977) emerges naturally from this network and 
(3)  that  motor  activity  can  synchronize  independent 
timing mechanisms across different sensory modalities. 

Keywords: Infancy;  cognitive  development;  interval  timing; 
embodied learning.

Introduction
Adults  from all  cultures  and  backgrounds  can  accurately 
anticipate  short-term  events,  can  catch  objects  thrown  to 
them,  and  can  perform  the  enormous  range  of  human 
activities that require timing. This universality may seem to 
imply that  the sense of time does not rely on learning or 
embodiment, a position implicitly taken by the well-known 
pacemaker-accumulator models of time perception (Gibbon, 
1997; Church, 1984; Gibbon, Church and Meck, 1984) and 
multiple-oscillator/coincidence-detection  models  (Miall, 
1989; Church and Broadbent, 1990). But there are a number 
of  problems  with  these  models,  most  important  among 
them, the problem of resetting the system for every event 
for  which  a  time  judgment  might  later  be  required. 
Recently, the reset problem has been avoided by suggesting 
that  time  perception  depends  on  memory-trace  decay 
(Staddon, 2005). Our central hypothesis is that adult timing 
capacities are learned in early infancy and require grounding 
in motor activity. For this reason, we developed a model of 
time-perception learning in infants. 

As far as we know this is the first developmental model of 
interval timing. It is a memory-based connectionist model of 
how infants learn to perceive time and has two further novel 
features.  First, it  uses the uncertainty of a memory for an 
event as the measure of how long ago that event happened. 
This  is  in  contrast  to  other  memory  models  which  use 
relative intensity (e.g Staddon and Higa, 1999).  Secondly, 
it  is  a  developmental  model  in  which  embodiment  – 
specifically,  infant  motor  activity  –  is  crucial  to  the 
calibration  of  time-perception  within  and  across  sensory 
modalities.  Learning  and  coordinated  motor  activity  in 
infancy play  a  key  role  in  synchronising  different  timing 
mechansism and permitting  developmental  predictions.  In 
addition,  the  scalar  property  of  interval  timing  (Gibbon, 
1977) emerges naturally from the model. 

This paper is organized as follows.  We begin by briefly 
discussing the various classes of models of time perception. 
We then present the theoretical justification and framework 
for  our connectionist  model  of  timing based on memory-
trace decay. We focus, in particular, on the need to calibrate 
this model via repetitive motor activity. Finally, we present 
the details of the model, including how it is calibrated by 
replicable signals in the motor system, and demonstrate that 
the well-known scalar property of interval timing (Gibbon, 
1977) is a natural by-product of its operation. We also show 
how this model could provide developmental predictions.

Background

Time  perception  is  central  to  human  cognition  (e.g., 
Grondin, 2008; Zakay and Block, 1997). Not only does it 
allow us to organize and make sense of physical events, it 
also underlies micro and macro level social interactions. At 
the  level  of  the  individual,  time  perception  is  linked  to 
executive  control,  delayed  gratification,  and  decision 
making. It,  therefore,  comes as no surprise that Immanuel 
Kant described time as an inner sense that  structures  and 
makes  possible  cognition.  Human  time  perception  is 
generally  divided  into  three  categories:  precision  timing 
(less than 500 ms), interval timing (500 ms. to 5 mins.), and 
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longer-term  time  perception,  each  of  which  appears  to 
implicate by a different neurocomputational system (Buhusi 
and Meck, 2005). This paper will be concerned only with 
interval  timing,  which  lies  between  cellularly-driven 
precision timing and longer-term sequence-based, schema-
driven timing. This intermediate level is believed to share a 
common  processing  core  with  spatial  and  numerical 
magnitude  estimation  abilities  (Walsh,  2003;  Brannon, 
Suanda and Libertus, 2007). 

There are currently three major explanatory paradigms for 
interval  timing.  The first relies on an internal  pacemaker 
that  emits  regular,  short  pulses  that  are  counted  by  an 
accumulator.  The  number  of  pulses  stored  in  the 
accumulator gives the measure of the time that has passed 
(Staddon and Higa,  1999;  Church,  1984; Gibbon, Church 
and  Meck,  1984,  Droit-Volet  and  Wearden  2001).  The 
second  class  of  models  relies  on  multiple  neuronal 
oscillators with coincidence detectors associating particular 
patterns  of  firing  with  given  time  intervals  (Church  and 
Broadbent, 1984, Matell and Meck, 2000).  Process-decay 
models constitute the final class, where the estimation of the 
passage of time is derived from the decay of memory traces 
(Staddon and Higa, 1999; Lewis and Miall, 2006).  

One  of  the  most  significant  problems  with  both 
pacemaker/accumulator  and  oscillator/coincidence-detector 
models  is  the  necessity  of  resetting  the  accumulators  or 
oscillators for every event that could potentially be timed. 
Are  there  multiple  accumulators,  one  for  each  possible 
event?  What  triggers  their  resetting?  What,  exactly, 
constitutes “an event?” Memory models of time-perception 
do not  have  this  problem.  The activation pattern  for  any 
event  for  which there  is  a  memory trace  will  decay  to  a 
greater  or  lesser  extent  depending  on  how  long  ago  the 
event took place.  The memory-trace decay determines the 
perception of the amount of time that has passed. 

However, models that rely on memory-trace decay need to 
be calibrated against the duration of events in the world. We 
suggest  that  infant  motor  activity  is  a  plausible  way  in  
which  this  calibration  could  be  achieved  early  in  
development.  Numerous authors (Lakoff, 1987; Glenberg, 
1997;  Thelen  and  Smith,  1996;  Piaget,  1955)  have 
convincingly argued for the importance of motor activity in 
structuring early perceptual and cognitive development. We 
believe that infant time perception needs to be included in 
the  range  of  cognitive  phenomena  structured  by  motor 
activity. 

There is now ample evidence that infants as young as 4 
months are able to keep track of short time intervals and can 
respond to the violation of an expectation based on a regular 
time  interval  (Colombo  and  Richman,  2002;  Adler  et  al, 
2008; Brannon et  al,  2007;  Clifton, 1974).  However,  this 
ability is not entirely mature and continues to develop well 
into childhood (e.g.,  Friedman, 2008; Droit-Volet, Tourret 
and  Wearden,  2004;  Goldberg,  1995),  in  concert  with 
children’s improved attentional control.

Theoretical Framework

We suggest that the development of interval time perception 
in infants is intimately linked to coordinated motor activity. 
Three main lines of argument support this hypothesis: 

1. Repetitive  motor  activity  is  ubiquitous  in  early 
infancy  (e.g.,  Piaget,  1955;  Droit-Volet,  Clement  and 
Fayol,  2008), even being present in newborns (Van der 
Meer, Van der Weel and Lee 1995; Lewandowsky, 1993). 
This movement is perfectly correlated with the time that it 
takes to complete it. When a baby moves its hand to touch 
its mother’s face, this is a motor activity,  but it is also a  
temporal  activity,  because  it  takes  a  certain  amount  of 
time  for  the  baby’s  hand  to  move  from  its  starting 
position  to  its  final  position.  This  fact  will  be  used  to 
calibrate our activation-decay model of time perception.

2. Areas  of  the  brain  that  are  important  in  motor 
activity  have  recently  been  found  to  play  a  role  in 
perceptual  timing  (Ivry,  1996;  Rao,  Meyer  and 
Harrington, 2001). It is now known that the disruption of 
input from the motor cortex to the associative areas of the 
parietal  cortex  selectively  interferes  with  perceptual 
timing (Bueti, Bahrami and Walsh, 2008).

3. Memory-trace decay is known to exist in the brain 
and is a well-studied and neurophysiologically plausible 
phenomenon (Staddon and Higa, 1999; Lewis and Miall, 
2006).  In  contrast,  after  25  years  of  research  the 
neurological  evidence  for  accumulator  models  remains 
equivocal (Staddon, 2005; Buhusi et al., 2005). 

In  addition,  if  time perception  is  shown to  develop  from 
embodied sensorimotor origins in infancy into more abstract 
adult representations then the present theory could provide a 
framework to explain how adult temporal concepts appear 
embodied despite limited neural data in adults (Kranjec and 
Chatterjee, 2010). 

The scalar property 

The scalar property for interval-timing (Gibbon, 1977) is a 
widely replicated finding in both adult humans and rats (see 
Gibbon and Allan, 1984 for  a book length summary).   It 
states  that  time-perception errors  (E)  increase  as  a  scalar 
function of the length of the time interval (I) to be predicted. 
An interval twice as long (2I) produces errors that are twice 
the large (2E).  This is surprising because the Central Limit 
Theorem predicts that error in cumulative processes grows 
more slowly – the expected error for an interval length 2I 

would  be  2E .  The  mechanisms  of  the  model  that  we 
propose  in  the  present  paper  solves  this  problem,  time-
interval  prediction uncertainty in  our model  does,  indeed, 
increase in a scalar fashion.  

The need for calibration

Memory-trace  models  determine  the  passage  of  time in 
terms  of  how  much  a  memory  trace  has  decayed.  But 
memory-trace  decay  cannot  be  directly  decoded  into 
temporal  information,  unless  there  is  (or  has  been)  some 



means  of  grounding  that  decay  in  meaningful,  repeatable 
event sequences.  The central hypothesis of this paper is our 
suggestion that infants ground memory-trace decay through 
self-generated,  repetitive  corporeal  motions  (such  as  arm 
movement). A simple example illustrates this idea.

Each time a baby moves its hand from a vertical position 
to a horizontal  position (Figure 1),  it  takes approximately 
the same amount of time and this allows different amounts 
of memory-trace decay to be grounded in amounts of body 
or arm movement.  

Imagine a baby playing with some toys. The baby picks 
up a colored block, waves it about a bit before bringing the 
object  to its  mouth for  a closer  inspection.  The length of 
time between when the baby first noticed the toy and when 
it  arrives  at  its  mouth will  be directly proportional  to the 
amount  of  arm  movement  the  baby  has  carried  out.  In 
another case, imagine that a baby is lying in a cot and hears 
a noise to his or her left. The baby may have to manouver its 
whole body in order to orient its head towards the sound. 
Again the amount of movement is proportional to the time 
since the original sound. 

Moreover, similar movement sequences will take broadly 
similar  lengths  of  time.  So body and arm movement  can 
serves as a rough temporal yardstick for visual and auditory 
memory-trace decay. In this way, over time an association 
between how long ago an event took place (as measured by 
activation decay of a memory trace) and limb movement is 
gradually  learned.  Infant  body  movement  serves  as  a 
metronome for the timing of memory decay.

 Visual and auditory events come in all shapes, sizes and 
intensities.  The initial  activation associated  with an event 
can  therefore  vary considerably  in  amplitude.  The fading 
memory trace for a high-intensity event will not correspond 
directly  to  the  fading  memory  trace  for  a  low-intensity 
event. That correspondence can be established via constant-
velocity  body  movement.  The  "yardstick"  of  repeatable, 
predictable body movement in space is what we propose to 
align the time perception for the two events. 

Visual and auditory are often, but not always, correlated 
Many visual events are not accompanied by a simultaneous 
production of sound and vice-versa. It is also important to 
note  that  the  calibration  of  visual  and  auditory  memory-
trace decay rates does not have to happen simultaneously. 

Architecture of the network

For this model we used a simple connectionist architecture 
(Figure  2)  with  a  “visual”  and  an  “auditory”  pathway 
leading to the same set of “arm position nodes.” Note that 
arm position here is chosen as an easily graspable instance 
of the more general notion of proprioceptive configuration.
The  input  layer  consisted  of  41  units  for  each  sensory 
modality  which  represented  a  memory  as  time  evolving 
guassian. These inputs connected to two independent sets of 
10  hidden  nodes  which  both  connected  to  the  same  10 
output nodes which encoded arm position as a binary vector. 
During training a particular arm position is associated with a 
particular time interval in one or the other modality and the 
network is trained using back-propogation of error. At test 

Figure 1. The two lines of graphs show hypothetical activation decay sequences (“ fading gaussians” ) over visual columns 
(α=0.0045, β = 0.001, ϕ = 0.0105) and over auditory columns (α=0.0048, β = 0.001, ϕ = 0.0105) at 500 time-step intervals 
over 3000 time steps.  Uncertainty (σ ) in both modalities grows linearly and leads to the scalar property of interval timing.



the gaussian corresponding to a particular time interval  is 
presented  in  a  single  modality  and  the  predicted  arm 
position  that  is  output  serves  as  a  proxy estimate  of  the 
amount of time since the original sensory event.

Arm position encoding

Here we use simplified topographic representations of limb 
position with binary encoding. Position 1 is given as [1 0 0 
0… ] , position two as [1 1 0 0 … ] and so on. Although 
movement  is  continuous  we  do  not  code  intermediate 
positions.  Similarly,  we  are  using  a  completely  linear 
representation.  This  is  an approximation.  Further  research 
with this model will attempt to direcly fit data from classic 
studies  of  infant  timing  abilities  which  used  predictive 
reaching  as  diagnostic  measure  (von  Hofsten,  1980)  and 
infant  electromyography  (EMG)  data  collected  as  part  of 
this research programme.

Memory decay using fading gaussians

We  begin  with  a  cluster  of  neuronal  columns  in  visual 
cortex.  The  central  column  of  the  41-column  cluster  is 
assumed to receive  input  from the  sensory interface.  The 
initial  activation  level  of  this  column  depends  on  the 
intensity of the input stimulus,  which we assume to be a 
visual  or  auditory  stimulus  of  short  duration.  Once  the 
stimulus is no longer present, the peak activation value of 
the central column will decrease and activation will spread 
to neighboring columns.  The activation of the ith column at 
time step t is designated by Ai(t), Activation at time t+1 is 
determined by the following equation:

Ai( t+1)=α( Ai−1(t)+Ai+1(t))+(1+β−ϕ) Ai (t)
where
α determines the amount of activation spreading between 

adjacent columns; 
β determines the level of self-excitation 
ϕ  determines the amount of activation leakage.

The  evolution  of  activation  in  this  cluster  of  columns, 
which we refer to as “fading gaussians,”  is illustrated by the 
series of graphs at the top and bottom of Figure 1, indicating 
activation decay in the visual  (top) and auditory (bottom) 
columns. 

Results
We report three preliminary results from our simulations1. 
First,  we  show  that  the  network  does,  indeed,  gradually 
learn to associate the fading-gaussian input profiles with the 
various  arm  positions.  The  network  gradually  learns  to 
associate the various stages of the fading visual or auditory 
input profiles with arm positions (Figure 3).  Second, after 
training, we test it to determine the amount of error roduced 
for each time interval (Figure 4).  

1The MATLAB code for these simulations can be downloaded 
from http://www.cbcd.bbk.ac.uk/people/affiliated/caspar/time

Figure 2: Schematic representation of network.

This  testing  is  done  by  inputting  to  the  network  the 
activation gaussians corresponding to 500, 1000, 1500, etc 
time steps of decay (here denoted as intervals from 1 to 90 
seconds).   We note  the  average  error  produced  from 20 
seperate estimates at each time interval. Figure 4 shows that 
error  increases  approximately  as  a  linear  function  of  the 
time interval being measured, which is what Weber's Law 
for interval timing predicts (Gibbon, 1977).  Third, in a final 
simulation, we show how, via arm movement, the visual and 
auditory  fading  gaussians  produce  correlated  outputs.   In 
other  words,  whether  a  time  interval  is  measured  in  the 
visual modality or in the auditory modality, the output (i.e., 
the estimate for the length of the time interval) will be the 
same.

Simulation 1: Development of interval timing 

 This first simulation looks at the performance of a network 
trained  in  one  modality  (Figure  3).  A  naive  network  is 
initialised with small random weights and is trained with  a  
set  of  randomly  presented  gaussian  activations.  Each  of 
these  is  associated  with  a  particular  amount  of  arm 
movement and the network is trained to predict these values. 
Figure 3 shows the average output of 20 networks during 
training across the full range of possible time intervals. The 
predicted arm position given by the network is translated to 
the corresponding time interval to plot the figure.

As can be seen the network learns to predict the intervals 
quite effectively in the middle of the range. It over estimates 
timing  on  short  intervals  and   underestimates  it  on  long 
intervals.  In part this is due the lack of granularity of the 
binary encoding. However, this general pattern of responses 
has been found in children's estimates of time (Droit-Volet, 
2003).   This model could provide an explanation for  this 
developmental effect.

http://www.cbcd.bbk.ac.uk/people/affiliated/caspar


Figure 3: Learning in a single modality network. Each line 
represents the output of partially trained networks. As 

learning progresses the lines tend to converge to the 'perfect 
prediction' diagonal. (Each line represents an averaged over 

20 equivalently trained networks.)

Simulation 2: The scalar property 

The second simulation demonstrates how the scalar property 
of interval timing is a natural feature of this model. With a 
network trained to make predictons of arm location from 
memory decay, we a took a set of twenty responses for 50 
different time points between 1 and 90 seconds. The average 
of these responses is plotted in Figure 4, together with error  
bars  representing  one  standard  deviation.  The  scalar 
property says that the size of the errors is proportional to the 
length  of  the  interval.  In  other  words  error  divided  by 
interval  should  be  a  constant.  We  also  plot  this  relative 
proportion in Figure 4. This proportion is constant which is 
what Weber's law predicts.

The bump appears to be due to the limited granularity of 
using a binary representation of arm position. It is important 
to  note  that  the  simplifying  assumptions  about  bodily 
representaion (binary,  linear)  are likely to  impair network 
performance.  Using  a  non-binary  representation  would 
provide greater information. Whilst  Fitts Law states that the 
motor system obeys a power law which suggests that motor 
representations also possess scalar properties. Similarly,  in 
the current model, body position is used both to calibrate the 
sensory  modalites  and  as  a  proxy  representaion  of  time 
quantities.  As  an  infant  matures  it  is  likely  that  its  time 
representations  will  become  more  abstract,  although  it  is 
beyond the scope of this paper to demonstrate this. In line 
with Walsh's (2003) ATOM model, we expect the brain to 
recruit  regions  of  the  cortex  that  represent  quantity 
logarithmically.  Future  iterations  of  this  model  will 
investigate both these refinements. 

 Figure 4: The scalar property in a trained network. The top 
line shows the average prediction at each interval and the 

standard deviations from 20 networks. The lower line shows 
this error as a relative proportion of the predicted interval.

Simulation  3:  Calibration  of  independent 
modalities 

The first  two simulations looked at  the performance of  a 
network trained in one modality. Here we investigate how 
embodiment can work as a mechanism to synchronise and 
calibrate  time  interval  estimates  in  different  modalities. 
Droit-Volet  (2003)  showed  that  children's  interval  timing 
can  differ  across  auditory  and  visual  domains  suggesting 
that there is some independence of these measures and that a 
development mechanism for calibration is required. 

Figure 5: Correlation between network predictions in two 
independent modalities with training.



In  our model,  each modality is trained separately but is 
tied to the same underlying bodily representation. To show 
how this leads to calibration and synchronisation of clocks 
in  different  modalities,  we  took  representative  networks 
trained in two modalities and looked at their outputs across 
the  full  range  of  possible  intervals  (1  to  90  seconds.) 
Correlating these outputs for the two independent networks 
showed how well calibrated and synchronised the networks 
were. In Figure 5, we plot the evolution of this correlation 
as the networks both gain greater experience.    

Conclusion
We  have  presented  a  new  model  of  interval  timing  in 
infants.  It  is  the  first  developmental  model  of  time 
perception and has two further novel features. It is based on 
memory  uncertainty  and  it  utilizes  embodied  learning  to 
calibrate timing across different perceptual modalities. We 
have  demonstrated  that  this  model  captures  the  scalar 
property  of  interval  timing  and  certain  developmental 
effects.  One prediction  of  this  model  is  that  restricting  a 
baby's movement would impair his or her time perception. 
This  precise  prediction  is  part  of  an  ongoing  research 
project involving babies.
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