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Abstract 
Development of analogical reasoning is often explained by 
general maturation of executive functions. A consequence of 
the involvement of executive functions would be that children 
and adults differ in the visual strategies they apply when 
solving analogical problems. Since visual strategies can be 
studied by means of eye-tracking, we compared the visual 
scanpaths of children and adults in three different analogical 
reasoning tasks. This comparison was done by means of a 
novel technique that combined a recently developed algorithm 
for computing  a “distance” between any pair of scanpaths 
(Jarodzka, Holmqvist, & Nyström, 2010), multidimensional 
scaling (MDS), and a neural network classifier. This analysis 
clearly showed a difference between adults' and children's 
visual strategies in solving analogy problems. We focus both 
on the demonstration that adults and children employ different 
visual search strategies to solve analogy problems and on the 
novel technique used to do this. This general technique 
complements other approaches to eye-movement analysis that 
rely on local properties of scanpaths, in particular, item-
fixation times. 
 
Keywords: Analogical reasoning; development; eye-tracking; 
strategies. 

Introduction  
Analogical reasoning is a ubiquitous process in thinking and 
reasoning (Gentner & Smith, 2012; Holyoak, 2012). It can 
be defined as a comparison of two domains (the source and 
the target domains) on the basis of their respective relational 
structure (Gentner, 1983). Studies of analogy making have 
explored two main explanations for its development, 
increase of structured knowledge (Gentner & Rattermann, 
1991; Goswami, 1992) and maturation of executive 
functions (Halford, 1993; Richland, Morrison, & Holyoak, 
2006; Thibaut, French, & Vezneva, 2010a, 2010b). One 
important prediction of the executive-function view is that 
children and adults use different strategies when solving 
analogy problems. The present study addressed this question 
by means of a combination of a recently developed 
algorithm (Jarodzka et al., 2010) for comparing visual 
scanpaths from an eye-tracker, multi-dimensional scaling 
(MDS), and a neural net classifier. This technique allowed 
us to give an affirmative answer to the central question of 
this paper — namely, whether or not children’s analogy 
strategies are quantifiably different than those of adults. 

Background 
Humans rely heavily on vision for virtually every task they 
do (e.g. categorization, spatial orientation, problem solving, 
etc.) and it remains a privileged way of acquiring 
information about the environment. In the case of problem 
solving, what information is sought and how this search is 
organized through time to come to a solution for the 
problem (i.e. visual strategies) may help researchers 
understand which solving strategies are used. Attention and 
gaze-fixation are highly correlated, especially for complex 
stimuli (Deubel & Schneider, 1996; He & Kowler, 1992) 
and the fixation time for a given object is correlated with its 
informativeness in a scene (Nodine, Carmody, & Kundel, 
1978). This argues in favor of studying eye-movements as 
indicators of the application of a specific strategy through 
control of attention. 

Eye-tracking data, especially if they involve scanpaths — 
i.e., the complete visual trajectory of a participant’s eye 
movements during the task — are often complex and hard to 
analyze. For this reason scanpath information is often 
reduced to static information about the participant’s gaze 
times at specified locations. This simplification, while 
certainly easier to analyze, generally fails to fully capture 
the temporal aspects of the data involved in visual 
strategies. Even when an attempt is made to take into 
account temporal aspects of the data, it is often difficult to 
compare two scanpaths because, in general, they differ in 
length and complexity. Jarodzka et al. (2010) have 
developed a method that is able to compare any two 
scanpaths. As the Jarodzka et al. algorithm plays a key role 
in the analysis that follows, we will describe our variant of 
this algorithm in some detail below. We combined this 
scanpath-comparison algorithm with multidimensional 
scaling and a neural-network classifier to demonstrate that 
children’s analogy-making strategies, as reflected in their 
visual search patterns across three different problems, are 
measurably different from those of adults. 

We are not the first to use eye-tracking technology to 
study analogy making, but this type of analysis is, 
nonetheless, still in its infancy. Eye-tracking techniques 
were first used by Bethell-Fox, Lohman, & Snow (1984) to 
study strategies when reasoning by analogy. They found 
strategic differences in adults with high or low fluid 



intelligence when solving geometric A:B::C:? problems. 
More recently, Gordon & Moser (2007) investigated adults’ 
strategies in scene analogy problems. Thibaut, French, 
Missault, Gérard, & Glady (2011) also used an eye-tracker 
to examine infants’ gaze locations and item-to-item 
transitions during an analogy task. However, all of these 
studies focused on what information was searched for by 
participants as they attempted to solve the analogy problem.  

None of this research compared participants’ global 
scanpaths. In other words, previous eye-tracking studies 
have focused on local aspects of participants’ scanpaths as a 
means of revealing part of the dynamics of visual search in 
doing analogy problems. By contrast, in the present study 
we will use participants’ global scanpaths in our attempt to 
respond to the question of whether children have different 
visual search strategies than adults when solving visual 
analogy problems. Woods et al. (2013) showed that the 
organization of search in visual-attention tasks becomes less 
variable over the course of development. Because the tasks 
we used rely on visual attention, we expected children to 
have more variable scanpaths than adults. 

Experiment 

Methods 

Participants 
Subjects were 20 adults (14 females, 6 males; mean 
age=20;5 years; SD=2.21; range: 17 to 27), students at the 
University of Burgundy and naïve to analogical reasoning 
tasks and 26 6-year-olds (16 females, 10 males; mean age= 
79.5 months; SD=3.6; range: 73 to 84). For children 
participating in this experiment, parents’ informed consent 
was required from their parents. 

Materials 
Three tasks, each composed of three training trials and four 
experimental trials, constituted the experiment (see Figure 
1). The first task was a scene analogy problem task, the 
second a standard A:B::C:? task and the third an A:B::C:? 
task with the items composing the problems put within a 
context. Each problem of each task was composed of 7 
black and white line drawings. 

In the scene analogy problems, the top scene was 
composed of two elements depicting a binary semantic 
relation (e.g. a cat chasing a mouse). One of these two 
elements had an arrow pointing to it. The bottom scene was 
composed of five drawings: the two elements depicting the 
same relation as in the top picture (e.g. a boy chasing a girl), 
a distractor item, and two elements that were consistent with 
the scene but that had no salient relation with the elements 
of the relation. These pictures (501x376 pxs) were based on 
Richland et al., (2006) except for the distractor that was 
chosen not to be perceptually, only semantically, related to 
one member of the relation in the bottom picture. 

In the standard A:B::C:? trials, the A, B, C drawings were 
presented in the top row along with a black empty square 
symbolizing the location of the solution. The four remaining 
pictures (the Target, a Related-to-C Distractor, and two 
Unrelated Distractors) were presented in a row at the bottom 
of the screen. The size of each picture was 200x195 pxs. 
The A:B::C:? task within context was constituted of two 
scenes (501x376 pxs). The top picture was composed of two 
black and white line drawings with a relation between them 
(e.g. a wolf and meat, with the wolf looking at the meat) 
with a contextual cue (e.g. a horizontal line for the horizon 
or the lines of the joining walls and floor for a room). The 
bottom picture was composed of the five remaining 
drawings: the C term, the Target, the Related-to-C 
Distractor and the two Unrelated Distractors. This task 
differed from the first task in that it was the C term that was 

 
 

Figure 1. Presentation of the three tasks used for this experiment: a) scene analogy task, b) standard A:B::C:? task, c) scene-
oriented A:B::C:? task 



 
 
pointed at with an arrow, and not one of the elements 
constituting the source relation. It differed from the second 
task because of the different pictures constituting the 
problems being grouped in two scenes, but equivalent to the 
standard A:B::C:? task in other respects. 

The materials of the last two tasks were based on 
materials previously used by Thibaut et al. (2011). The four 
trials of each task were two trials with weak association 
strengths between A and B, C and T, and C and Dis, and 
two with strong association strengths in order to equilibrate 
this factor. 

The tasks were displayed on a Tobii T120 eye-tracker 
device with a 1024x768 screen resolution. 

Procedure 
Appropriate controls were carried out to ensure that the 
participants knew what the items in each of the problems 
were and that they understood the instructions. In the first 
task, they were asked to point to the element in the bottom 
scene that played the same role as the one which had an 
arrow pointing to it in the top scene. The two others tasks 
were administered as in Thibaut et al. (2011). Eye-tracking 
data was gathered from moment of the initial presentation of 
the problem to the moment a choice of one of the answers 
was made.  The participant’s scanpath for a particular 
problem consisted of a record of his/her gaze-fixation points 
taken every 8ms. 

Data Analysis 

 
 

Figure 2. Simplification of a scanpath 
 
The goal of this analysis is to compare the sets of children’s 
and adults’ scanpaths and to show that there are quantifiable 
differences in the two. To do this we use a combination of (a 
variant of) Jarodzka et al.’s (2010) scanpath-comparison 
algorithm, multidimensional scaling and a neural-net 
classifier. As the latter two techniques are well known, we 
will not discuss them at length. However, the Jarodzka et al. 
algorithm is relatively recent and requires explanation.   
 
Jarodzka et al. (2010) scanpath-comparison algorithm 
 
The algorithm is designed to determine the similarity of any 
two scanpaths. It consists of two phases, a simplification 

phase and a comparison phase.  A scanpath is considered to 
be made up of a series of “saccade vectors,” i.e., a 
connected series of vectors whose endpoints correspond to 
coordinates of successive gaze points (Figure 2a). First, the 
scanpath is simplified by combining into a single vector two 
consecutive saccade vectors if: 

i) their combined length does not exceed 200 pixels in 
amplitude (i.e., each is very small) and 

ii) they are nearly in straight line (i.e., the angle between 
them is between 2.62 and 3.67rad).  
In other words if a saccade vector is very small or very 
linear with respect to its predecessor in the scanpath, the two 
vectors are combined (Figure 2b). 

Once each of the two scanpaths has been simplified, they 
can be compared. We begin by giving an intuitive 
explanation of how this is done. Assume, for example, there 
are two simplified scanpaths, S1 and S2 made up of 3 and 
saccade vectors, respectively. In other words, S1 = {u1, u2 , 
u3}  and  S2  =  {v1 , v2 , v3 , v4}.  Note  that  these  saccade  

 
 

Figure 3. Saccade-vector difference table (a): Each of the 
saccade vectors from each of the two scanpaths are 

compared based on the chosen metric. (b) The comparison 
of each pair of stretched scanpaths corresponds to a traverse 
of the table from the upper-left to the lower-right corner of 
the saccade-vector difference matrix (the only directions of 
movement permitted are down, right and diagonally down-
and-right). We find the path that produces the lowest total 
difference value and this value is the similarity measure 

assigned to S1 and S2 
 
vectors are ordered in time. For example, in S1, the saccade 
vector u1 is followed by u2, which is followed by u3. To 
compare S1 and S2, we need two scanpaths of the same 
length. To achieve this, we will "stretch" each scanpath by 
adding immediate repetitions of saccade vectors, so that 



they both have the same length. Our goal is to find the two 
stretched scanpaths, SS1 and SS2 that are as similar as 
possible with respect to the chosen metric (orientation, 
length, etc.). This similarity will be the measure of the 
distance between S1 and S2. 

The easiest way to illustrate this stretching is by means of 
a saccade-vector difference table for the two scanpaths, S1 
and S2, defined above. 

A saccade-vector difference matrix is first created (Figure 
3a). Each of the saccade-vectors making up one of the 
scanpaths S1 is compared to each of the saccade-vectors of 
the other scanpath S2, according to a metric, generally, 
vector magnitude or orientation (length in our study). Once 
this table is constructed, we consider all paths through the 
table that begin with the comparison of the first saccade 
vectors in both scanpaths (i.e., cell (1, 1) of the table, ∆(u1, 
v1)) and end with a comparison of the final saccade vectors 
in each scanpath (i.e., cell (3, 4) of the table, ∆(u3, v4)) and 
always move to the right, down, or diagonally down-and-
right. Three examples of paths through the matrix are 
illustrated in the right-hand panel of Figure 3. Each path 
through the table corresponds to the comparison of two 
specific stretched scanpaths. For example, the uppermost 
path shown corresponds to a comparison between SS1 = {u1, 
u1, u1, u2, u2, u3} and SS2 = {v1, v2, v3, v3, v4, v4}. This path 
corresponds to the sum of the values in the cells (1,1), (1,2), 
(1,3), (2,3), (2,4), (3,4) of the saccade-vector difference 
matrix. When all of these paths through the matrix are 
considered, the path which has the smallest value (i.e. the 
smallest cumulative sum of comparisons) is selected. This 
path corresponds to the two stretched scanpaths that are the 
most similar. This value, normalized by the number of 
comparisons done, is the similarity measure assigned to the 
comparison of scanpaths S1 and S2.   

Note that the algorithm as described here differs from 
Jarodzka et al. (2010) in that it does not rely on the more 
complex Dijkstra (1959) tree-search algorithm. Instead, we 
constructed a matrix, cell by cell, with the lowest 
cumulative sum of comparisons possible for each cell while 
taking into account the constraints put on the comparisons 
of the two scanpaths (navigate rightward, downward, or 
diagonally downward and to the right). In our example, the 
final distance value between S1 and S2 is the cumulative sum 
in C(3,4) normalized by the number of steps taken through 
the matrix. This algorithm was computationally less 
complex for identical results. 

 
The Jarodzka et al. (2010)/MDS/MLP algorithm applied to 
scanpaths of analogy problems 

 
We only compared the scanpaths from strictly identical 
problems, but not different trials from the same task. Thus, 
when we were comparing an adult scanpath and a child's 
scanpath, the disposition of the items in the problem they 
were solving was identical. 

In this way, for a given set of isomorphic problems (i.e., 
where all of the items were in identical places on the 
screen), we computed the differences between all pairs of 
scanpaths. In other words, if there were S1 to Sn scanpaths 
from children and A1 to Am scanpaths from adults on the 
same set of isomorphic problems, we computed the 
similarity of all pairwise comparisons of scanpaths Si versus 
Sj, Si versus Aj, and Ai versus Aj for all i and j. 

Once we had calculated the mean differences between 
scanpaths generated by each participant in each task, we 
used Multidimensional Scaling to obtain the coordinates on 
a 2D map that best preserved the distance between 
scanpaths. As can be seen in Figure 4, for each of the three 
tasks, the scanpaths clustered according to participant type 
(Adult or Children). We verified this clustering using a 3-
layered perceptron (MLP) with a bias node on the input and 
hidden layers (5 hidden units, learning rate = 0.05, 
momentum = 0.9) with the coordinates of each scanpath on 
the MDS map translated into bipolar values and 
concatenated on input. We used a Leave-One-Out cross-
validation technique to test the robustness of the 
classification. Leave-One-Out cross-validation is a standard 
technique in machine learning whereby the classifier (in this 
case a neural network) is trained on all items but one. Once 
training is complete, the classifier is tested on the item that 
had been left out to see whether or not it is classified 
correctly.  

Results 
Using the method of analysis described above, we did a 
pairwise comparison of all scanpaths generated by adults 
and children on isomorphic analogy problems. We then 
conducted a multi-dimensional scaling analysis of this data, 
which produced the location-map clusters shown in Figure 
4. These points are a 2D representation that best reflects the 
distances between the scanpaths. The crosses correspond to 
children's scanpaths; the circles correspond to adults' 
scanpaths. 
 
Classification of adults’ versus children’s scanpaths 
 
The Jarodzka et al. (2010) method along with 
Multidimensional Scaling led to a 2D location map that best 
represented the relative distances between the set of 
scanpaths, as calculated by the Jarodzka et al. algorithm 
(Figure 4). A three-layered feedforward backpropagation 
network (MLP) with a Leave-One-Out cross-validation 
method, was used to test the robustness of a classification of 
the points representing the two groups (i.e. children and 
adults). For the scene analogy and A:B::C:? tasks (Figure 1a 
and 1b), the network classified 74% of the participants 
correctly based on their scanpath (70% of the 20 adults and 
78% of the 23 children for both tasks). For the real-world 
A:B::C:? task, the network classified 72% of the subjects 
correctly (65% of the adults and 78% of the children). This 



was significantly above chance (50%) for each task 
(binomial test: Z=14.89; p<.001 for the first and second; 
Z=14.30; p<.001 for the third). Intuitively, this result can be  

Figure 4. Location-map of an MDS analysis of the relative 
differences among participants for the scene analogy task 
(a), the standard A:B::C:? task (b), and the scene-oriented 

A:B::C:? task (c). Crosses represent children's scanpaths; o's 
are adults' scanpaths. 

 
seen in Figure 3. The adult group tends to be more 
homogenous than the children as the crosses (children’s 
scanpaths) are more scattered than the circles (adults’ 
scanpaths), and this is reflected in the high degree of 
accurate classification of the MLP. 

General discussion 
The present study addressed the following question in a 
novel manner: Do children and adults have different visual 
strategies in analogical reasoning tasks? To answer this, we 
used an eye-tracking methodology whose data were 
analyzed by a combination of the Jarodzka et al. (2010) 
scanpath-comparison algorithm, the transformation of this 
data into a 2D location map using multidimensional scaling, 
and, finally, a quantitative adult/child classification by 
means of a feedforward backpropagation network. The 
neural-net classification was done by training the network 
on the scanpath data for all but one participant. Once the 
network was trained, it was tested on the one scanpath that 
was left out of the training set. This was done for each 
participant’s scanpath data and the result was scored 
according to whether the network classified the test 
scanpath correctly or not. The results obtained with this 
method agree with previous results from Thibaut et al. 2011 
who also showed, by analyzing item gaze times and the 
number of transitions between items that adults and children 
differed in their search strategies in the standard A:B::C:? 
analogy task. The present work, using an approach based on 
individuals’ entire scanpaths, also extends this previous 
work to scene analogy problems and scene-oriented 
A:B::C:? problems. This scanpath analysis showed, among 
other things, that children’s scanpaths were more variable 
than those of adults in the three tasks. These differences 
support the hypothesis of the key role of executive functions 
in analogy making because the lower variability of adults’ 
scanpaths is indicative of them applying, through control of 
attention, a previously adopted plan for solving analogy 
problems (Woods et al., 2013) 

The scanpath analysis presented in this paper provides a 
means of studying various search strategies in analogy 
making. The technique presented in this paper overcomes 
thorny problem of comparison of scanpaths of different 
lengths and allows to take into account the dynamic features 
of search, which are largely missed in other, more static 
eye-tracking approaches based on item fixation times. It 
could also be used, for example, to confirm differences in 
analogy-making strategies observed in adults in Bethell-Fox 
et al. (1984) and to classify participants based on their 
scanpath data (i.e., “elimination strategies” for participants 
with low fluid intelligence and “constructive matching 
strategies” for participants with high fluid intelligence). This 
method is, of course, not limited to studies of analogy-
making, and could be used with any other type of problems 



whose crucial information for its solution could be 
presented on a screen. 

Conclusion 
The method of scanpath analysis presented in this paper 
provides a new tool to analyze the dynamic aspects of 
search strategies in a wide variety of experimental contexts. 
As shown by the results, this method is sensitive to global 
differences between scanpaths and is useful to discriminate 
clusters of strategies. In this paper it has been used to show 
that children’s and adults’ differ in their variability while 
solving analogical reasoning problems, suggesting the 
involvement of executive functions in such tasks. However, 
to fully understand the causes of these differences, it is 
inevitable to use local information. Thus, it should be used 
in combination of other existing methods, in particular, 
Area-of-Interest (AOI) methods that provide information on 
what information is sought and how long it is watched 
(informativeness of stimuli), since this information is not 
captured by the Jarodzka et al. method. On the other hand, 
AOI methods give limited information about the dynamic 
progression of search, something which is captured when 
full scanpath information is used. In short, the Jarodzka et 
al. (2010), combined with an MDS analysis and a classifier 
(backpropagation networks, Support Vector Machines, etc.), 
provides a potentially far-reaching tool for analyzing 
participants’ dynamic strategies in various problem-solving 
contexts. 
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