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Abstract In recent years, eyetracking has begun to be used to
study the dynamics of analogy making. Numerous scanpath-
comparison algorithms and machine-learning techniques are
available that can be applied to the raw eyetracking data. We
show how scanpath-comparison algorithms, combined with
multidimensional scaling and a classification algorithm, can
be used to resolve an outstanding question in analogy mak-
ing—namely, whether or not children’s and adults’ strategies
in solving analogy problems are different. (They are.) We
show which of these scanpath-comparison algorithms is best
suited to the kinds of analogy problems that have formed the
basis of much analogy-making research over the years.
Furthermore, we use machine-learning classification algo-
rithms to examine the item-to-item saccade vectors making
up these scanpaths. We show which of these algorithms best
predicts, from very early on in a trial, on the basis of the
frequency of various item-to-item saccades, whether a child
or an adult is doing the problem. This type of analysis can also
be used to predict, on the basis of the item-to-item saccade
dynamics in the first third of a trial, whether or not a problem
will be solved correctly.
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Traditionally, analogy making has been studied statically.
Participants typically see a pair of related images (the Bbase

pair^), along with a third image and a number of candidate
target images. One of these target images—the Bcorrect ana-
logical match^—is supposed to be related to the third image in
the same way that the base items were related to one another.
The participant’s task is to identify the correct analogical match.
Correct and incorrect answers (and, sometimes, reaction times)
are recorded and analyzed. However, these studies could not
capture—and in fairness, were not designed to capture—the
dynamic aspects of solving an analogy problem. As such, they
shed essentially no light on the question of what strategies were
adopted during the course of solving analogy problems.

In this article, we introduce a novel means of studying the
dynamic aspects of analogy making in both children and
adults. The proposed methodology involves combining
eyetracking, multidimensional scaling (MDS), and neural-
network classification algorithms, as well as using machine-
learning algorithms to analyze the component vectors making
up participants’ scanpaths. In what follows, we will briefly
describe each of these techniques and show how they can be
combined successfully in the context of analogy making.

Although the purpose of this article is, first and foremost, a
methodological one, it is important to note that the develop-
ment of these techniques has allowed us (French & Thibaut,
2014; Thibaut & French, 2016; Thibaut, French, Missault,
Gérard, & Glady, 2011) to answer, for what we believe to be
the first time, a long-standing question in the field of analogy-
making—namely, do children and adults use the same (or very
similar) search-space strategies when solving analogy prob-
lems? The answer, as will be shown in what follows, is Bno.^

Eyetracking

Eyetracking involves following the gaze trajectories of partic-
ipants as they perform a particular task. The underlying
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assumption is that sequences of eye movements (i.e.,
scanpaths) are a reflection of the mental activity involved in
studying a scene, examining a face, pondering a configuration
of items, and so on. It is the first tool that has allowed the
dynamics of solving analogy problems to be studied.

Analyzing eyetracking data

Obviously, recording participants’ scanpaths as they do anal-
ogy problems is of little use unless these data can be analyzed
in an appropriate manner. There are currently a number of
different scanpath-comparison techniques, each with its own
advantages and disadvantages. In the present article, we com-
pare three of the most important of these techniques in the
context of their application to the study of analogy making.
To compare these techniques, we analyze their outputs by
means of multidimensional scaling and neural-network clas-
sification algorithms.

The test bed for these techniques will be how well these
algorithms can be used to answer what for many years has
been an open question in the field of analogy making—name-
ly, whether or not children’s analogy problem-solving strate-
gies are different from those of adults. One of these tech-
niques, developed by Jarodzka, Holmqvist, and Nyström
(2010), allows us to answer this question (in the affirmative)
significantly better than the other two.

Subsequently, we analyze the item-to-item gaze transitions
making up these scanpaths using two different machine-
learning classification algorithms, linear discriminant analysis
(LDA; Fisher, 1936) and support vector machines (SVM;
Vapnik, 1995, 1998). These techniques not only allow us to
better understand where the differences between adults’ and
children’s search strategies lay and at what point in time these
differences arise, but crucially, they also allow us to predict,
significantly better than chance and very early in a trial,
whether a child or an adult was doing the problem, whether
or not the problem would be solved correctly, and so forth.

Background

Analogical reasoning is a ubiquitous process in thinking and
reasoning (Gentner & Smith, 2012; Hofstadter, 2001;
Holyoak, 2012; Holyoak, Gentner, & Kokinov, 2001). It can
be defined as a comparison of two domains (the source and the
target domains) on the basis of their respective relational struc-
ture (Gentner, 1983). Studies of analogy making have ex-
plored two main explanations for its development—namely,
the increase of structured knowledge (Gentner & Rattermann,
1991; Goswami, 1992; Goswami and Brown, 1990) and the
maturation of executive functions (Halford, 1993; Richland,
Morrison, & Holyoak, 2006; Thibaut, French, & Vezneva,

2010a, 2010b). An important prediction of the executive-
function view is that children and adults should organize their
searches of the analogy-problem space differently (see also
Woods et al., 2013). This is what we mean when we say that
they use different strategies when solving analogy problems.
What information is sought and how the search for this infor-
mation is organized in time are crucial to understanding how
the analogy problem is solved. Attention and gaze fixations are
highly correlated, especially for complex stimuli (Deubel &
Schneider, 1996; He & Kowler, 1992), and the fixation time
for a given object is correlated with its informativeness in a
scene (Nodine, Carmody, & Kundel, 1978). In other words,
eye movements can provide a window on specific problem-
solving strategies—in particular, for problems involving visual
information. This makes eyetracking particularly well adapted
to the types of analogy problems that we will consider.

We are not the first to use eyetracking technology to study
analogy making, but this type of analysis remains, nonethe-
less, in its infancy. Eyetracking techniques were first used by
Bethell-Fox, Lohman, and Snow (1984) to study strategies
when reasoning by analogy. They found strategic differences
in adults with high or low fluid intelligence when solving
geometric A:B::C:? problems. More recently, Gordon and
Moser (2007) investigated adults’ strategies in scene analogy
problems. Thibaut et al. (2011), Glady et al. (2013), French
and Thibaut (2014), and Thibaut and French (2016) all used
eyetracking technology to examine children’s gaze locations
and item-to-item transitions during analogy tasks, demonstrat-
ing clear differences between adults’ and children’s strategies
in solving analogy problems.

Comparing three scanpath-comparison algorithms

A scanpath is the complete visual trajectory of a participant’s
eye movements during a task, and various techniques have
been developed to characterize and compare scanpaths. We
will consider three of these techniques: The most widely used
is an algorithm developed by Levenshtein (1966), another is
the widely used attentional map algorithm (AMAP; Ouerhani,
von Wartburg, Hugli, & Muri, 2004; Rajashekar, Van der
Linde, Bovik, & Cormack, 2008), and the third is a relatively
recent vector-based algorithm developed by Jarodzka,
Holmqvist, and Nyström (2010). Each of these algorithms
compares two scanpaths and produces a number that indicates
how similar they are to each other. We will compare these
three scanpath algorithms according to how well they distin-
guish children’s from adults’ scanpaths during analogy-
solving problems. All three of these scanpath algorithms
showed that there were, in fact, significant differences be-
tween how children and adults solve analogy problems.
However, one of the algorithms, the Jarodzka et al. algorithm,
is best suited to these analyses and outperforms the other two.
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Scanpath comparison

To do this comparison, we gave children and adults the same
analogy problems and recorded their scanpaths while they
were solving the problems. We then used each of the
scanpath-comparison algorithms to produce a pairwise com-
parison of all of the scanpaths, both children’s and adults’, to
produce a similarity matrix between all scanpaths for the prob-
lems. By means of multidimensional scaling (MDS; Cox &
Cox, 2001; Torgerson, 1952) we converted this matrix into a
2-D map that reflected each of the similarity measures. Each
scanpath was represented by a point on this 2-D MDS map
(see Fig. 4a–c below). We then performed a Bleave-one-out
cross-validation^ (LOOCV) procedure (see Geisser, 1975;
Lachenbruch, 1967; Miller, 1974; Stone, 1974; for a review,
see Arlot & Celisse, 2010) on these points using a standard
feedforward–backpropagation (FFBP) network (Rumelhart,
McClelland, & the PDP Research Group, 1986). This analysis
worked as follows. For each point p in the MDS map, we
trained the FFBP network to correctly classify (i.e., adult or
child) all of the other points in the map except p (hence, the
name of the procedure, Bleave-one-out^). We then presented
the previously unseen point, p, to the network to see whether
the network would classify p correctly (i.e., as to whether it
corresponded to an adult’s or a child’s scanpath). We did this
for all points p in the 2-D MDS map. For all of the scanpath-
comparison algorithms, once the dimensionality of the data
had been reduced by MDS, the FFBP network was able to
correctly classify the left-out participants well above chance,
which shows that adults and children do use different
strategies to solve analogy problems. As we will show in
more detail below, the Jarodzka et al. (2010) algorithm pro-
duced the best results.

We begin with a brief description of each of the three algo-
rithms we tested.

Levenshtein’s (1966) Bstring-edit^ algorithm

This algorithm divides the scan area into predefined areas of
interest (AOIs) and then associates each of the fixation coor-
dinates recorded by the eyetracker with one of these areas.
Scanpaths are considered to be sequences of these AOIs.
The duration of the fixation in each area is not taken into
account (i.e., consecutive fixations that fall into one AOI are
collapsed). Suppose, for example, that the AOIs for a particu-
lar problem are labeled A, B, C, D, E, F, G, and H. Suppose
further that there is a scanpath S1 = BADEGAGCB, which
meant that the participant’s gaze moved successively from
area B to A to D to E, and so forth. A second, shorter scanpath
might be S2 = ABDEGBG. The Levenshtein algorithm is a
Bstring-edit^ algorithm that determines the Bdistance^ be-
tween two scanpaths as the smallest number of single-letter
substitutions, deletions, and/or insertions required to

transform one string into the other. This number is calculated
using the Wagner–Fischer algorithm (Wagner & Fischer,
1974) and is the Levenshtein distance between the two
scanpaths.

Attention map (AMAP) scanpath comparison

There are a number of Battention map^ algorithms. These
algorithms compare two scanpaths by computing how long
various locations are looked at, how far each fixation point
in one scanpath is from the closest fixation point in the other
scanpath, and so forth. One of the earliest algorithms based on
attention measures is the Mannan distance algorithm
(Mannan, Ruddock, & Wooding, 1997). However, this class
of scanpath-comparison techniques has a number of draw-
backs—most importantly for our purposes, the temporal order
of fixations is lost. So, even if the two scanpaths have very
different lengths and shapes, an AMAP algorithm could still
indicate a high degree of similarity between them (Le Meur &
Baccino, 2013). When attempting to uncover exploration
strategies that unfold over time, the loss of temporal informa-
tion poses a serious problem. More recent AMAP comparison
algorithms (e.g., Ouerhani et al., 2004; Rajashekar et al.,
2008) create attention Blandscapes^ by accumulating fixed-
width Gaussians over fixation points. It is generally accepted
that the longer a fixation time on a particular item, the deeper
the visual processing of that item (Just & Carpenter, 1976). In
this attentional-landscape algorithm, as in the earliest AMAP
algorithms, temporal-order information is still lost.

After obtaining attention maps for each trial, comparison
scores between the different scanpaths are obtained using a
coefficient of correlation between the values of the two atten-
tion maps. As with the Levenshtein algorithm, we used the
AMAP pairwise scanpath-comparison scores to create a sim-
ilarity matrix comparing children’s and adults’ scanpaths for
the three sets of problems described above.

Vector-based scanpath-comparison (Jarodzka et al., 2010)

A novel method of scanpath comparison was recently pro-
posed by Jarodzka et al. (2010). This algorithm turns out to
be a particularly powerful one for analyzing scanpaths from
analogy-making problems. Below we present our simplifica-
tion of this algorithm.

A scanpath is considered to be made up of a series of
Bsaccade vectors,^—that is, a concatenated series of vectors
whose endpoints correspond to the coordinates of successive
gaze points (Fig. 1, left panel). The scanpath is first simplified
by combining into a single vector any two consecutive sac-
cade vectors that are nearly collinear and by combining very
short vectors with longer adjacent ones (Fig. 1, right panel). In
general, very small saccade vectors occur when a participant
has fixed his or her gaze on a particular item.
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After this simplification, two scanpath vectors can be com-
pared by Bstretching^ one or both of them appropriately.
Scanpath stretching, which is at the heart of this algorithm,
requires some explaining. Assume that there are two saccade
vectors, U = {u1, u2, u3} and V = {v1, v2, v3, v4}. In other
words, scanpath U consists of the saccade vector u1 followed
by u2, which is followed by u3. Similarly, the scanpath V
consists of saccade vector v1, followed by v2, followed by
v3, followed by v4. To compare U and V, we need to transform
them into two scanpaths of the same length. To achieve this,
we Bstretch^ the scanpaths, as necessary, so that we can align
them for comparison. This is done by adding immediate rep-
etitions of saccade vectors (we call this Bstretching^ the orig-
inal scanpath), so that the two stretched scanpaths have the
same length. Our goal is to find the two stretched scanpaths,
U’ and V’, that are as similar as possible to each other with
respect to the chosen similarity metric (orientation, length,
etc.). The degree of similarity between U’ and V’ will be the
measure of the similarity between U and V.

The idea is to make a matrix with the saccade vectors of
one scanpath on the x-axis and the saccade vectors of the
second scanpath on the y-axis (see Fig. 2). The uppermost cell
on the left is the starting cell, and the lowermost cell on the
right is the ending cell. We then traverse this matrix from the
starting cell to the ending cell, on each step always moving
closer to the ending cell. (BBackward^ moves are not permit-
ted.) Each cell that is traversed contains a value that measures
how close the two saccade vectors associated with that cell
are. (The lower the value, the more similar the two saccade
vectors.) Our goal is find the path with the lowest possible
total similarity value.

So, if we suppose that the path through the matrix that goes
through {(u1, v1), (u1, v2), (u1, v3), (u2, v3), (u2, v4), (u3, v4)}
(shown in dashed red in Fig. 2b) is the one with the smallest
total difference value, we observe that U has been Bstretched^
to become U’ by repeating u1 and u2 to become U’ = {u1, u1,
u1, u2, u2, u3}, and V has been stretched by repeating v3 and v4
to become V’ = {v1, v2, v3, v3, v4, v4}.

U’ and V’ now have the same length and can, therefore, be
compared by a pairwise comparison of their respective com-
ponent saccade vectors. This comparison may be made on the
basis of the respective lengths of the paired component sac-
cade vectors, their orientations, and so forth.

We now describe this algorithm in detail. A saccade vector
difference matrix is first created (Fig. 2a). Each of the saccade
vectors making up one of the scanpaths is compared to each of
the saccade vectors making up the other scanpath, according
to a metric—generally, vector magnitude or orientation (mag-
nitude, in our study). Once this table is constructed, we con-
sider all paths through the table that begin with the comparison
of the first saccade vectors in both scanpaths [i.e., cell (1, 1) of
the table, containingΔ(u1, v1)] and end with a comparison of
the final saccade vectors in each scanpath [i.e., cell (3, 4) of the
table, containing Δ(u3, v4)]. The traverse of the difference
matrix always moves to the right, down, or diagonally
down-and-right. Three examples of paths through the matrix
are illustrated in the Fig. 2b. Each path through the table cor-
responds to the comparison of two specific (stretched)
scanpaths. For example, the uppermost path shown corre-
sponds to a comparison between U’ = {u1, u1, u1, u2, u2, u3}
and V’ = {v1, v2, v3, v3, v4, v4}. This path corresponds to the
sum of the values in the cells (1, 1), (1, 2), (1, 3), (2, 3), (2, 4),
(3, 4) of the saccade vector difference matrix. When all of
these paths through the matrix are considered, the path that
has the smallest total difference value (i.e., the smallest cumu-
lative sum of comparisons) is selected. This path corresponds
to the two stretched scanpaths that are the most similar.

We simplified the Jarodzka et al. (2010) algorithm by
eliminating the relatively complex Dijkstra (1959) tree-
search algorithm that it uses. Instead, we simply con-
structed a path through the difference matrix by moving
only rightward, downward, or diagonally from the upper-
left cell toward the lower-right cell. As we progressed
incrementally through the saccade vector difference ma-
trix, we recorded in the cells of the cumulative-difference
matrix in Fig. 2b the smallest sum of the difference values

Original scanpath Simplified scanpath

a) b)

Fig. 1 Simplifying scanpaths according to the Jarodzka et al. (2010) algorithm
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of all the paths that led to that cell. This is similar to the
matrix-traversal technique used in the Wagner–Fischer al-
gorithm (Wagner & Fischer, 1974), adopted in the
Levenshtein string-edit algorithm. Necessarily, more than
one path leads to most cells (except cells at the top and
left edges of the matrix). Thus, in each cell, we put the
value of the Bleast costly^ path to that cell, which was the
path corresponding to the greatest overall similarity of the
scanpaths to that point. This meant that at each step of the
process, each cell of the cumulative-difference matrix al-
ways contained the value of the Bleast costly^ path from
C(1, 1) to that cell. The difference measure between any
two scanpaths U and V is the cumulative sum of the dif-
ferences in the lower-right cell of the cumulative-
difference matrix, normalized by the number of steps tak-
en through the matrix.

As we had done for the Levenshtein and AMAP
algorithms, we used the Jarodzka et al. (2010) algorithm to
create a similarity matrix between the adults’ and children’s
scanpaths for the four trials in each of the three conditions (see
the Materials section in the description of the experiment be-
low, as well as Fig. 3). The metric we used for the similarity of
the saccade vectors (i.e., to calculate the saccade vector differ-
ence matrix for each pair of scanpaths) was their length. Using
a standardMDS (Torgerson, 1952) procedure, we transformed
the similarity matrices into 2-D scatterplots (see Fig. 4 in the
Results below).

Testing the scanpath algorithms and analyzing their
component item-to-item transitions

To test the performances of the three scanpath-comparison
algorithms described above in the domain of analogy making,
and to examine further the information that can be gleaned
from item-to-item transitions within these scanpaths, we ran
an analogy-making experiment composed of three different
types of analogy-making tasks.

Experiment with three analogy-making tasks

Overview

The goal of this experiment was to consider the output of each
of the three scanpath-comparison algorithms for a set of three
different types of analogy problems done by children and
adults. These data were then converted by MDS into a 2-D
plot and analyzed by means of a neural-net classifier to deter-
mine how well each of the scanpath algorithms discriminated
children’s scanpaths from those of adults.

Method

Participants The participants were 20 adults (14 females, six
males; mean age = 20.4 years, SD = 2.21; range: 17 to 27),
who were students at the University of Burgundy–Franche-
Comté and naïve to analogical reasoning tasks, and 25 six-
year-olds (16 females, nine males; mean age = 79.5 months,
SD = 3.6; range: 73 to 84). For the children participating in
this experiment, the parents’ informed consent was obtained.

Materials Three tasks, each composed of three training trials
and four experimental trials, constituted the experiment. The
first task was a BScene^ analogy problem task (Richland et al.,
2006), the second a standard A:B::C:? task (called BABCD^),
and the third an A:B::C:? task with the items composing the
problems put into a context (e.g., a bird flying to its nest, etc.;
hereafter called BABCD-scene^). Each problem of each task
was composed of seven images, each being a black-and-white
line drawing (Fig. 3).

In the scene analogy problems (BScene^), the top scene was
composed of two elements depicting a binary semantic rela-
tion: in Fig. 3, a mouse (A) being chased by a cat (B). One of
these two elements (B) had an arrow pointing to it. The bottom
scene was composed of five drawings: the two elements

Fig. 2 (a) Saccade vector difference matrix. Each of the saccade vectors
making up each of the two scanpaths is compared on the basis of the
chosen metric, and a saccade vector difference table is drawn up
containing these differences. (b) Cumulative-difference matrix. The
comparison of each pair of stretched scanpaths corresponds to a

traverse of the table from the upper-left to the lower-right corner of the
saccade vector difference matrix (the only directions of movement
permitted are down, right, and diagonally down-and-right). We find the
path that produces the lowest total difference value, and this value is the
measure of the similarity between U and V
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depicting the same relation as in the top picture: here, a girl (C)
being chased by a boy (T). There was also a distractor item, in
this case a bird (D), and two elements that were consistent
with the scene but that had no salient relation with the ele-
ments of the relation. These pictures (501 × 376 pixels) were
based on those created by Richland et al. (2006). We have
labeled the items in the scene analogy problem to correspond
to the A:B::C:D paradigm.

In the standard A:B::C:? task (BABCD^), the A, B, and C
drawings were presented in the top row, along with an empty
square symbolizing the location of the solution. The four re-
maining pictures, the target (T), a related-to-C distractor (D),
and two unrelated distractors, were presented in a row at the
bottom of the screen. The size of each picture was 200 × 195
pixels.

The contextualized A:B::C:? task (BABCD-Scene^)
consisted of two scenes (501 × 376 pixels). The top pic-
ture was composed of two black-and-white line drawings
with a relation between them. In Fig. 3, this is a bird (A)
flying to its nest (B). The bottom picture was composed
of five drawings: in the figure, a dog (C), a doghouse (T),
a bone (the semantic distractor, D), and two unrelated
distractors. This task differed from the first task in that
here the C term was designated with an arrow, and not
one of the elements constituting the base relation. It dif-
fered from the second task because the different pictures
constituting the problem were grouped into two scenes,
but it was otherwise equivalent to the standard A:B::C:?
task. The materials of the last two tasks were based on
those previously used by Thibaut et al. (2011).

The tasks were displayed on a Tobii T120 eyetracker de-
vice with a 1,024 × 768 screen resolution. A standard five-

point calibration for the eyetracker was used. Prior to each
trial, an image of a duck was presented in the middle of the
screen instead of the standard fixation cross.

Procedure Appropriate controls were carried out to ensure
that the participants knew what the items in each of the prob-
lems were and that they understood the instructions. In the
first task, they were asked to point to the element in the bottom
scene that played the same role as the one that had an arrow
pointing to it in the top scene. The two others tasks were
administered as in Thibaut et al. (2011). Eyetracking data were
gathered from the moment of the initial presentation of the
problem to the moment that a choice of one of the answers
was made. The participant’s scanpath for a particular problem
consisted of a record of his or her gaze-fixation points, taken
every 8 ms.

Analysis of the data Using the three different scanpath-
comparison algorithms described above, we compared the
scanpaths of adults and children on strictly identical problems.
It was, of course, necessary for each problem to be seen by
both adults and children, so that the locations of the items were
identical. Using each of the three scanpath-comparison algo-
rithms, we created three similarity matrices for the full set of
scanpaths, one for each algorithm. These matrices, which
were subsequently analyzed by an MDS algorithm, were pro-
duced by performing a pairwise comparison of all of the chil-
dren’s and all of the adults’ scanpaths. In other words, the
matrices consisted of all child–child, child–adult, and adult–
adult scanpath comparisons.

A B 

C T 

A 

B 

C 

D 

D

T 

A

B

C

D

T

a) b) c)

Fig. 3 Presentations of the three tasks used for this experiment: (a) the scene analogy task (BScene^), (b) a standard A:B::C:? task (BABCD^), and (c) the
scene-oriented A:B::C:? task (BABCD-Scene^)
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Results

MDS scatterplots of children’s and adults’ scanpaths
Below we show the MDS scatterplots (Fig. 4) derived from the
similarity matrices computed by each of the three scanpath-
comparison algorithms for the trials in each of the three experi-
mental conditions. (See the Materials section of the experiment
description above and the examples shown in Fig. 3.)

Each of the points (o’s and x’s) in these scatterplots represents
a scanpath, for either an adult (o) or a child (x), recorded as the
participant solved one of the three types of analogy problems.
The extent to which the points for children clumped in distinct
groups that were different from those of adults was a measure
of how distinct the analogy-solving strategies were for the two
groups. We can see that both groups of points for the
scatterplots produced by the Levenshtein algorithm are quite
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Fig. 4 (a) Multidimensional scaling (MDS) scatterplots derived from the
scanpath similaritymatrices produced by Levenshtein’s (1966) algorithm.
(b) MDS scatterplots derived from the scanpath similarity matrices
produced by an attention-mapping algorithm (AMAP: Ouerhani et al.,

2004; the x’s are children, the o’s adults). (c) MDS scatterplots derived
from the scanpath similarity matrices produced by Jarodzka et al.’s (2010)
algorithm (the x’s are children, the o’s adults)

Behav Res



tightly clustered together, that those produced by the AMAP
algorithm are far more dispersed and hard to distinguish, and
that those produced by the Jarodzka algorithm are the easiest
to distinguish. In the next section, we quantify these
differences.

Neural-network classification of the MDS scanpath
scatterplot points For each of the conditions and each of
the scanpath classification algorithms, we wished to quantify
the extent to which the scanpaths from the adults were distinct
from those of the children. To do this, we used a standard
LOOCV procedure on the points in the MDS map using a
standard FFBP network (Rumelhart et al. , 1986).
Specifically, we used a three-layer perceptron with two input
units (one for each coordinate of the points in the MDS map),
five hidden units, and one category node (i.e., child or adult).
There was a bias node on the input and hidden layers. During
training, the network was run either until all of its training
exemplars had been learned to a 0.2 criterion or for a maxi-
mum of 2,500 training epochs. We used a shallow sigmoid
with a temperature parameter (β) of 0.1. For each MDS map,
the input to the network consisted of the real coordinates of
each point in the map, and the Bteacher^ for that point was the
group (adult/child) to which it belonged.

We ran an LOOCV procedure for all of the points in each
MDS map. We then computed the total number of points that
had been correctly classified. The higher this value, the more
distinct were the scanpaths of adults and children.

The results of this analysis are shown in Fig. 5. All results
are significantly above chance (i.e., .5). Of the three scanpath-
comparison algorithms, the performance of the Jarodzka et al.
(2010) algorithm (with Bvector magnitude^ as the comparison
metric) is the best, and the AMAP algorithm the poorest. In
the case of the Jarodzka et al. algorithm, we obtained an adult/
child prediction accuracy of 80 % for the scene analogy
problems.

Studying the item-to-item saccades (transitions) making
up the scanpaths Once we had looked at the analyses of the
global scanpaths, we then considered the item-to-item sac-
cades (transitions) that made up the scanpaths. We did this
on the basis of the idea that if a participant had frequent suc-
cessive saccades between two items, then he or she was con-
sidering that there was some relation between those two items,
a relation that was, or might be, important in solving the anal-
ogy problem. The importance of the role of the relations be-
tween individual items is almost universally accepted in the
analogy-making community. We believe that item-to-item
saccades reveal the collecting of this relational information,
a point of view also endorsed by Salvucci and Anderson
(2001), Thibaut et al. (2011), Hayes, Petrov, and Sederberg
(2011), and others.

Thus, for both adults and children we considered their re-
spective item-to-item saccade profiles (i.e., AB, AC, CT, etc.).
We determined how well the various sets of these profiles
allowed children to be distinguished from adults. We then
compared LDA and SVM with three different kernels to de-
termine how well each of these algorithms, when applied to
various sets of item-to-item transitions, predicted whether the
individual doing a problem was an adult or a child. We were
particularly interested in making this prediction as early as
possible, which is why we paid particular attention to item-
to-item saccade profiles in the first third of the trial.

Predictions based on item-to-item saccadesWe looked at all
of the item-to-item saccades (transitions) that were potentially
relevant to solving the three types of A:B::C:D analogy prob-
lems given to participants. This set of transitions was AB, AC,
BC, BT, CT, CD, and TD. Over the course of the trial, we
counted the numbers of these item-to-item saccades that made
up each scanpath. This gave us a Btransition profile^ for each
participant and each trial. For example, suppose that for a
given trial a child had eight AB transitions, two AC transi-
tions, one AC transition, no BT transitions, 12 CT transitions,
eight CD transitions, and four TD transitions; the child’s {AB,
AC, CT} transition profile for that trial would then be {8, 2,
12}, the {AB, TD} transition profile would be {8, 4}, and so
on.

As we described earlier, there were three trial types:
BScene,^ BABCD,^ and BABCD-Scene.^ For each of these
three trial types, we considered all possible sets of transitions
(e.g., {CT}, {AB, BC}, {AB, CT, CD, TD}, etc., for a total of
127 different sets of transitions). We trained and tested an
LDA classifier (Fisher, 1936) on each set of transitions using
the LOOCV technique. In our case, this meant that for a given
set of transitions (e.g., {AB, BC, TD}), and for the set of 45
participants, one participant was left out of the training set, and
the LDAwas trained on the other 44 participants. Then LDA
attempted to predict whether the Bleft-out^ participant was an
adult or a child.We did this for all 45 participants and reported
the percentage of correct predictions. This procedure was re-
peated for all 127 possible subsets of the set of seven item-to-
item transitions (i.e., AB, AC, BC, BT, CT, CD, and TD). In
this way, we were able to determine (1) which set of item-to-
item transitions best predicted whether the participant was an
adult or a child and (2) how good this prediction was.

We then ran an identical LOOCV procedure using a stan-
dard, two-class SVM classifier (Vapnik, 1995, 1998), using
quadratic, polynomial (order 3), and radial-basis function
(RBF) kernels. It is generally accepted that SVMs are some
of the most powerful classifiers that exist. We also tested a
standard backpropagation network with ten hidden units,
learning rate = 0.005, momentum = 0.9, one output node,
and a number of input nodes corresponding to the number of
item-to-item transitions being tested. However, although we
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found that its classification performance was acceptable, these
networks were extremely slow, on the order of two orders of
magnitude slower than the LDA and SVM algorithms.
Therefore, we have not included them in this comparative
analysis.

We considered only the transitions during the first third of
each trial. The predictive powers of the six best transition
profiles for each problem type are shown for LDA
(Table 1a) and for SVM with an RBF kernel (Table 1b). We
only show the results for the LDA classifier, which had the
poorest classification performance, and the SVM classifier
with an RBF kernel, which had the best. The runtimes of all
classifiers were approximately the same.

Somewhat counterintuitively, prediction based on item-to-
item saccade profiles is better if we look only at the first third
of the trial than if we consider the whole trial. This is because,
over the course of the entire trial, some item-to-item saccades
for adults and children tended to balance out. For example,
children might look at the CT transition more than adults in
the first third of the trial, but less than adults in the final third.
As a result, the overall numbers of CT transitions over the
course of the whole trial could even out between children
and adults and, for this reason, do not provide a good means
of discriminating adults from children. On the other hand, the
numbers of CT transitions in the first third of a trial are sig-
nificantly different for children and adults and allow the two
groups to be discriminated.

Finally, we looked at the overall numbers of item-to-item
saccades for all participants during the first third of each trial
for both adults and children for each of the three types of
analogy problems. Children, in general, took longer than
adults to do a given problem and, as a result, had a higher

total number of saccades for each problem. For this reason,
for each participant we normalized the data for each saccade
type (i.e., AB, CT, etc.) by dividing his or her number of
saccades for that saccade type by his or her total number of
saccades (Table 2). We compared these normalized frequency
values for each saccade type to the sets of transitions used by
LDA and SVM to produce the best predictions as to whether
an adult or child was doing an analogy problem.

Discussion

This article is not about analogy making per se. Rather, it
concerns the quality of the classification methods and
machine-learning techniques used to analyze eyetracking data
produced in a study of the dynamics of analogy making. That
said, it should be noted that these techniques, when applied to
the eyetracking data generated by children and adults during
analogy problem solving, allowed us to answer an outstanding
problem in the field of analogy—namely, whether children
use different strategies than adults when solving analogy
problems.

Most importantly, in terms of methodology, we com-
pared a number of widely used scanpath algorithms and
found that the Jarodzka et al. (2010) algorithm is the most
efficient one for examining scanpaths during analogy
making. We also applied classic (LDA) and advanced
(SVM) classification techniques to sets of the transitions
making up scanpaths and demonstrated that these
machine-learning techniques can be used to predict, well
above chance, and in the first several seconds of a trial,
whether the participant doing the problem is a child or an

Fig. 5 A feedforward–backpropagation network trained on the points in
the MDS maps derived from the scanpath-difference matrices for each of
the three scanpath-comparison algorithms (Levenshtein, AMAP, and

Jarodzka) and the three experimental conditions (Scene, ABCD, and
ABCD-Scene). The AMAP algorithm is the poorest performer, and the
Jarodzka et al. (2010) algorithm is clearly the best

Behav Res



adult. We also found that SVM with an RBF kernel pro-
duced the best adult/child predictions of the four classi-
fiers tested. Finally, we found that certain subsets of item-
to-item saccades predicted whether a child or an adult was
doing a problem better than the full set of item-to-item
transitions.

Table 2 shows the normalized differences (diff/max)
between adults and children in the numbers of each type
of transition for the three kinds of analogy problems in the
first third of each trial. (The larger the value, the larger the
difference will be between adults and children for a par-
ticular transition type.) Both LDA and SVM made use of
the distinguishing differences between adults’ and chil-
dren’s transition profiles during the first third of a trial

to make their predictions. Thus, at least one of the transi-
tions in a set of transitions used for prediction would,
almost certainly, be a transition for which there was a
large normalized difference between adults and children.
Consider the subsets of transitions that resulted in the best
predictions by the SVM–RBF algorithm for the three
analogy problem types. For the scene analogies, SVM
used the BT and CD transitions to produced the best pre-
diction of whether a child or an adult was doing a prob-
lem (74 % accuracy). When we look at Table 2, we see
that the two transitions that have the greatest normalized
differences between adults and children are BT (.45) and
CD (.61). For the ABCD analogy problems, the diff/max
value of the CT transition (.93) is nearly twice as large as
any other transition, and this transition is present in all six
of the transition sets that produced excellent adult/child
predictions (78–80 % accuracy). Finally, for transitions
in the ABCD-scene problems, there is little variation be-
tween the normalized differences in Table 2 between
adults and children. The top three transitions, based on
their normalized differences, are BT (.38), BC (.33), and
AC (.29). The six best distinguishing subsets, ranging in
prediction accuracy from 74 to 82 % correct, all include at
least one, and generally two, of these three transitions.

The point, in terms of methodology, is that the classi-
fication algorithms studied here provide an extremely
powerful means of predicting whether a child or an adult
is doing an analogy problem (or what the outcome of the
trial will be), by spotting differences in strategies early in
a trial. Analyses using LDA or SVM not only allow us to

Table 1 Correct-prediction probabilities using LDA (a) and SVMwith an RBF kernel (b) for the six best sets of transition profiles for the three types of
analogy problems

Scene ABCD ABCD-Scene

P(Correct- prediction) Transition profile P(Correct- prediction) Transition profile P(Correct- prediction) Transition profile

a. LDA

.70 AB AC BT .79 AC CT .64 AB

.70 AB BT CT TD .76 AB CT .64 AB BC

.70 AB BT CT CD TD .74 AC BT CT .63 AC

.69 AC BC CT .72 BC CT .63 AC BT

.68 BT CD .71 AB BC CT .62 AC CD TD

.675 AC BC CD TD .71 AB BT CT .62 AC BC BT

b. SVM with RBF kernel

.74 BT CD .8 AB BC CT CD .82 AB AC BC

.675 AC BC CD TD .79 BC CT .77 AB AC BC CT

.67 AB BT .79 AC CT .75 AB BC CT

.66 AC BC BT CD TD .78 AB CT .75 AB BT CT TD

.61 AC BC TD .78 AB CT CD .75 AB AC BC BT

.61 AC BC CD .78 AB AC BT CT .74 AC CT

Table 2 Differences between the (normalized) numbers of transitions
for adults and children, as compared to the maximum number of
transitions

Diff/Max AB AC AT BC BT BD CT CD TD

Scene .13 .35 .21 .24 .45 .27 .08 .61 .08

ABCD .29 .36 .46 .14 .55 .34 .93 .19 .37

ABCD-Scene .10 .29 .24 .33 .38 .26 .06 .26 .28

These values were calculated as follows. Consider the BC transition for
the ABCD problem type. For children, the normalized number (i.e., the
fraction of the total number of transitions) of BC transitions was .28, and
for adults this value was .24. The diff/max value in the table was obtained
by taking the absolute value of the difference between these two values
(i.e., .04) and dividing it by the maximum of both values (i.e., .28). Thus,
we have (.28 – .24)/.28 = .14.
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observe early-on differences in strategies that distinguish
adults from children, but also reveal that the differences in
their strategies also depend on the type of analogy prob-
lem being done. So, for example, with the ABCD analogy
problems, both LDA and SVM show the CT transition to
be important for adult–child classification, a fact that is
borne out by the transition frequency counts in Table 2.
On the other hand, these same analyses show that the CT
transition is less important for the scene and ABCD-scene
problems in predicting the age group (child/adult) of the
participant.

Finally, it was not lost on us that these techniques
could be applied to determining from the first third of a
trial whether or not a correct answer would be given by a
child for a particular problem. (Adults, for all intents and
purposes, always answer the problems correctly, so we
only ran this analysis with children.) Although we do
not present the data in this article, we ran a second exper-
iment, very similar to the one described above, in which
we looked at this. These results are reported in French and
Thibaut (2014). We found that by looking at a set of two
item-to-item transitions, {AB, CT}, in the first 3 s of a
trial, we could predict with an accuracy well above
chance (62.5 %) whether or not a child would answer a
given problem correctly.

The bottom line is that scanpath-comparison algorithms
and the machine-learning techniques that accompany
them are powerful tools to study the dynamics of analogy
making. In building models of analogy making, we want
to know what the models predict and how they make
those predictions. Although the tools presented in this
article are more involved with prediction than with expla-
nation, the two are hardly unrelated, especially when we
know the bases of the predictions. Our overarching goal
has been to point reseachers in analogy making toward
tools and analysis techniques that will allow them to bet-
ter study the dynamics of how people solve analogy
problems.

Conclusion

Eyetracking technology has come of age. Equipment that,
as little as a decade ago, cost tens of thousands of dollars
can now be purchased for several hundred. More and
more researchers in the behavioral sciences are using this
technology to probe the mechanisms underlying diverse
cognitive skills, in general, and analogy making, in par-
ticular. By comparing a number of scanpath-comparison
algorithms and machine-learning techniques that can be
applied to raw data generated by eyetrackers, we hope
to have pointed researchers to tools that will best serve
them as they attempt to study the dynamics of analogy
making.
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