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Abstract 

When solving arithmetic problems, semantic factors influence 

the representations built (Gamo, Sander & Richard, 2010). In 

order to specify such interpretative processes, we created 

structurally isomorphic word problems that could be solved 

with two distinct algorithms. We tested whether a distinction 

between cardinal and ordinal quantities would lead solvers, due 

to their daily-life knowledge, to build different representations, 

influencing their strategies as well as the nature of their 

drawings. We compared 5th grade children and adults in order 

to assess the validity of this hypothesis with participants of 

varying arithmetic proficiency. Results confirmed that the 

distinction between cardinal and ordinal situations led to 

different solving strategies and to different drawings among 

both age groups. This study supports the cardinal versus 

ordinal ontological distinction and calls for the integration of 

the role of daily-life semantics when accounting for arithmetic 

problem solving processes. 

Keywords: arithmetic problem solving; interpreted 

structure; semantic encoding; strategy choice. 

Introduction 

What are the steps between reading an arithmetic word 

problem and implementing a set of mathematical operations, 

and how can they be studied? It is well established, since 

Riley, Greeno and Heller (1983) proposed their typology of 

additive word problems, that different problem statements 

lead to different performances. Yet, the reasoning processes 

and representations accounting for such differences remains 

controversial.  

The schema theory (Kintsch & Greeno, 1985) proposes 

that solving a word problem requires to select and to 

instantiate a schema fitting the problem at hand. For example, 

any comparison problem will require to retrieve the 

corresponding schema and to implement it with the available 

values (Riley et al., 1983). However, it has been argued that 

this approach underestimates interpretative effects. For 

instance, Hudson (1983) showed that young children had 

much more trouble solving a problem stating “there are 5 

birds and 3 worms, how many more birds is there than 

worms?” than they had solving a problem in which the 

question was “how many birds won’t get a worm?”. This 

result shows that two problems sharing the same schema can 

lead to different performances.  

A contrasting approach comes from Johnson-Laird’s 

(1983) theory of mental models. It posits that, during reading, 

a mental representation is constructed in working memory, 

the structure of which is analogous to the structure of the 

situation depicted in the problem statement (Reusser, 1990). 

This representation depicts the meaningful relations between 

the elements of the problem. The idea of a problem-specific 

representation integrating conceptual information from the 

problem statement can account for interpretative effects 

described in the literature. De Corte, Verschaffel and De Win 

(1985) showed that rewording a problem statement so that the 

semantic relations are made more salient facilitates the 

solving process. Similarly, introducing daily-life situations in 

the cover stories of word problems contributes to better 

performance (Stern & Lehrndorfer, 1992; Vlahović-Štetić, 

1999). The use of specific words or sentences can modify the 

representation constructed by the solvers (Cummins, Kintsch, 

Reusser & Weimer, 1988). In a study challenging the 

predictions of mental model and schema views, Thevenot, 

Devidal, Barrouillet and Fayol (2007) showed that placing 

the question at the beginning instead of at the end of a 

problem statement provided more benefit to the less 

experienced solvers. This result supported the mental model 

theory, whereas a schema account would have predicted the 

reverse pattern.  

Semantic determinants of problem solving 

The issue of the semantic determinants of the solvers’ mental 

representations is of importance. Bassok, Wu and Olseth 

(1995) showed that the semantic relations connecting a 

problem’s entities influence analogical transfer. They 

contrasted problems where objects were given to people (OP) 

and problems were people were assigned to objects (PO). 

They found that, since in real life objects are usually given to 

people rather than people being assigned to objects, OP 

training examples led to better performance with OP transfer 

problems than with PO transfer problems. 

Along this line, Bassok, Chase and Martin (1998) asked 

participants to create addition or division problems involving 



specific sets of objects that were provided. They showed that 

when the objects shared a functionally asymmetric semantic 

relation (e.g. apples and baskets evoke the contain relation), 

participants tended to create division problems, whereas they 

created addition problems when using functionally 

symmetric sets of objects (such as oranges and apples, that 

belong to the same superordinate fruit category). These biases 

are not driven by arithmetic properties but rather by the world 

semantics. Bassok (2001) developed the semantic alignment 

framework proposing that the solvers abstract an interpreted 

structure that depends on their world knowledge about the 

entities described in the problem statement. This interpreted 

structure integrates the structural role of the entities 

mentioned in the problem, and can thus lead to an appropriate 

use of abstract formal knowledge when the relations it 

describes are semantically aligned with the mathematical 

relations of the problem (Bassok et al., 1998; Bassok, 2001). 

Both behavioral (Bassok, Pedigo & Oskarsson, 2008) and 

physiological (Guthormsen et al., 2015) measures confirmed 

that problem solving is easier when daily-life knowledge 

(world semantics) and knowledge about mathematical 

concepts (mathematical semantics) are aligned with each 

other. 

Investigating participants’ representations 

The semantic alignment framework predicts that 

representations abstracted from problem statements influence 

solver’s solving strategies. Yet, the key semantic dimensions 

influencing the representations and explaining the lack of 

transfer remain to be elucidated in order to promote methods 

to help students overcome the incompatibilities posed by a 

problem.  

In this regard, problems with multiple solving strategies are 

of particular interest to study representations, since the 

selection of one strategy over another is informative about the 

representation constructed by the solvers (De Corte, 

Verschaffel & De Win, 1985). For instance, Thevenot and 

Oakhill (2005) worked on a multiple-step problem solving 

task in which the cognitive load was manipulated through 

values size (large or small). They showed that depending on 

the size of the values, participants used different solving 

algorithms. The issue of the semantic determinants of 

problem representations can be tackled using such a 

paradigm in which different solving strategies are available, 

and the solver’s ability to pick and use one tells us about the 

abstracted interpreted structures (Hakem, Sander, Labat & 

Richard, 2005). For example, Coquin-Viennot & Moreau 

(2003) showed that the presence of a grouping element in a 

problem statement (such as flowers presented within a 

bouquet instead of separately) could incite participants to use 

a factorizing rather than a development algorithm.  

Another way to study the participants’ mental 

representations is the use of drawings. Vosniadou and Brewer 

(1992) elicited drawings from 3rd and 5th grade children so as 

to study the development of their representations of the earth. 

As for problem solving, studies have highlighted the link 

between problem representations and drawings of the 

situations (Barrios & Martinez, 2014; Edens & Potter, 2007). 

Drawings are thus an accurate way to gather information 

regarding the solvers representations. 

Encoding ordinal and cardinal quantities 

In the following experiment, we will capitalize on problems 

that can be solved with two different strategies. Previous 

studies have suggested that one can draw an ontological 

distinction between two types of situations involving 

numerical values: cardinal situations, consisting of sets of 

unordered elements, and ordinal situations, where units are 

endogenously ordered and can be represented along an axis, 

such as a timeline (Gamo et al., 2010; Hakem et al., 2005; 

Sander & Richard, 2005). When solving an arithmetic word 

problem, the authors posited that solvers abstract an 

interpreted structure that is aligned with either a cardinal or 

an ordinal representation. 

These two types of representations elicit different solving 

strategies: in ordinal representations, subtractions are seen as 

calculations performed on a one-dimensional ordered scale, 

whereas in cardinal representations they are encoded as a 

difference between a whole and a component part (Hakem et 

al., 2005). Thus, according to Gamo et al.’s hypothesis, a 

subtraction could either be perceived as a comparison or as a 

complementation, depending on the situation described in the 

problem statement. The paradigm developed by Hakem et al. 

consisted in problems that admitted two distinct solving 

strategies that were implementable for both cardinal (number 

of people) and ordinal (duration) quantities. Problem 

statements 1 and 2 below embody this distinction between 

cardinal problems and ordinal problems:  

- Problem 1: “There are 5 people in the Richard family. 

When the Richards go on holidays with the Roberts, they 

make a total of 14 people at the hotel. The Roberts are joined 

on holiday by the Dumas family. In the Dumas family, there 

are 3 people less than in the Richard family. The Roberts are 

going on holidays with the Dumas. How many will they be at 

the hotel?” 
- Problem 2: “Antoine took painting classes for 5 years, and 

stopped at the age of 14. Jean started at the same age as 

Antoine, and went to classes 3 years less than him. How old 

was Jean when he stopped attending painting classes?” 

 
Figure 1: Structure of the problems. This structure can 

depict both problems and is compatible with both strategies. 

 

Problems 1 and 2 are isomorphs sharing the same deep 

structure (Figure 1), and can both be solved using either of 

two strategies: either a 3-step complementation strategy (14 



– 5 = 9; 5 – 3 = 2; 9 + 2 = 11) or a 1-step matching strategy 

(14 – 3 = 11). Yet, because the quantities used are different, 

the authors hypothesized that (i) the interpreted structures 

abstracted are too, each problem statement consequently 

favoring the use of one strategy over the other; and that (ii) 

the unequal distribution of strategies used may be accounted 

for by the nature of the representations abstracted: problem 1 

encoded as a cardinal problem (Figure 2) and problem 2 

encoded as an ordinal problem (Figure 3).  

 
Figure 2: Cardinal representation of problem 1. This 

interpreted structure fosters the calculation of the 

intersection (part 2) between whole 1 and whole 2, thus 

favoring the 3-step complementation strategy. 

 

 
Figure 3: Ordinal representation of problem 2. This 

interpreted structure puts forward the fact that the difference 

between whole 1 and whole 2 is equal to the difference 

between part 1 and part 3. The shorter 1-step comparison 

algorithm thus becomes available to solve the problem. 

 

In accordance with the authors’ hypothesis, the participants 

who were asked to solve the problems using as few 

operations as possible found the 1-step matching strategy on 

problem 1 in less than 5% of the cases. On the other hand, 

problem 2 led to a rate of use of the 1-step matching strategy 

over 60%, suggesting that comparisons are indeed made 

salient in ordinal representations. Hakem et al.’s (2005) study 

of the solving strategies showed that the two types of 

problems were underlain by different representations. Yet, 

the claim that ordinal and cardinal quantities evoke the 

corresponding ordinal and cardinal representations needs 

further empirical support. 

Present study 

Our study builds on the work of Hakem et al. (2005) in order 

to highlight the role of the general semantic features on the 

representations abstracted by the solvers and on the 

implemented solving strategies. We aimed at providing 

converging measures of the impact of the cardinal/ordinal 

distinction on the solvers’ ability to solve the problems, and 

to provide the first empirical test of these effects on children 

and adults simultaneously. To this end, 5th graders as well as 

adults were asked to perform two tasks: solving problems 

involving different types of cardinal and ordinal variables 

using as few operations as possible, and making a drawing 

for each problem. 

The goal of the experiment was twofold: first, we intended 

to confirm with both age groups the validity of the ordinal 

versus cardinal distinction with a new material including new 

types of quantities and using more systematically controlled 

problem statements. This was intended to show that strong 

semantic effects affect both younger and older – more 

proficient – participants in arithmetic problem solving. 

Second, we wanted to show that those effects originate in the 

representations abstracted from the problems, and translate 

into the algorithms implemented by the solvers. We predicted 

that within each group, the mean percentage of the 1-step 

matching strategy would be significantly lower on cardinal 

problems than on ordinal problems, despite the adults 

achieving a globally higher solving performance than the 

children. Also, we predicted that for each age group the 

drawings would reveal a higher ordinal versus cardinal ratio 

of distinctive features for ordinal than for cardinal problems. 

Experiment 

Participants 

We recruited samples from two populations for this study: a 

group of 59 children in 5th grade (27 females, M = 11.00 

years, SD = 0.36), and a group of 52 adults (36 females, M = 

26.86 years, SD = 9.72). All participants were recruited from 

the Paris region and spoke French fluently. None had 

previously participated in any similar experiment. 

Materials and procedure 

Each participant was presented with a set of 12 problems, 6 

using ordinal values (duration, height or number of floors), 

and 6 using cardinal values (number of elements, price or 

weight), according to Hakem et al.’s definition. We 

considered duration, height and number of floors as ordinal 

values because their ordinal component is salient in daily life, 

putting emphasis on successorship relation and on 

comparison. Similarly, number of elements, price and weight 

were used as cardinal values because the world semantics 

attached to such quantities evoke the unordered grouping of 

elements assigned to values and the partition of a whole into 

its component parts.  

All the problems had the same number of sentences. The 

numerical values were provided in the same order and both 

numerical values and problem order were randomized 

between participants. The problems were printed on 13-page 

booklets with the instructions detailed on the first page. The 

participants were asked (1) to solve the problems using as few 

arithmetic operations as possible, (2) to write down every 

operation they made, even those they solved using mental 

calculation, and (3) to make a drawing for each problem 

statement that could help someone else understand and solve 



the problem. Each page was divided into four parts: problem 

statement, ‘draft’ area, ‘response’ area and ‘drawing’ area. 

The booklets and instructions were strictly identical for both 

age groups. 

Coding 

The successful strategies were categorized either as correct 

1-step matching strategy, or as correct 3-step 

complementation strategy. A problem was considered correct 

when the expected result was obtained and accompanied by 

calculations1. Regarding the drawings, we designed an 8-item 

rating scale evaluating to what extent the drawings possessed 

ordinal versus cardinal characteristics. The scale included 4 

cardinal items (Figure 4.a) and 4 ordinal items (Figure 4.b). 

The items were chosen so that they would either depict 

unordered elements being grouped in sets and embedded sets, 

or ordered elements being described as positions on an axis 

and compared along this axis. 

 

 
Figure 4.a: Coding grid for cardinal features. 

 

 
Figure 4.b: Coding grid for ordinal features. 

 

                                                           
1 When a calculation error resulted in a difference of +1 or −1 

compared to the correct value, problems were still considered 

correctly solved. 

Each drawing, including those associated with failed 

problems, was scored by two independent raters who were 

not familiar with the theories at play and ignored the 

hypotheses being tested. They were asked to rate the 

drawings according to the 8 items scale resulting from the 

aggregation of Figures 4.a and 4.b. After an initial rating 

phase, the percent agreement between the two raters was of 

91.87%. An inter-rater reliability analysis using Cohen’s 

Kappa statistic showed substantial agreement between raters. 

(κ = 0.61, SE = 0.14), according to Landis & Koch’s typology 

(1977). After discussion, the raters reached 100% agreement. 

For each drawing, a score was then calculated by subtracting 

the number of cardinal items to the number of ordinal items, 

thus creating a scale ranging from −4 (the most cardinal) to 

+4 (the most ordinal). 

Results 

Our first hypothesis was that problems with ordinal quantities 

should facilitate the use of the matching 1-step strategy 

compared to problems with cardinal quantities. In both 

groups, we evaluated whether participants did use the 1-step 

matching strategy more often on problems involving ordinal 

world semantics as compared to problems with cardinal 

world semantics, as hypothesized.  

 
Figure 5: Children’s and adults’ mean rate of use of the two 

solving algorithms depending on the type of quantity used. 

 

Figure 5 details the participants’ use of each strategy 

depending on the type of quantity featured in the problems. 

A paired t-test analysis revealed that the mean rate of use of 

the 1-step matching strategy was higher on ordinal (M=0.39, 

SD=0.31) than on cardinal (M=0.08, SD=0.17) problems 

(t(58)=8,36 p < 0.001). The same analyses were performed 

for the adults and showed that the mean rate of use of the 1-



step matching strategy was also higher on ordinal (M=0.457, 

SD=0.33) than on cardinal (M=0.253, SD=0.35) problems 

(t(51)=4.99, p<0.001). This confirmed that the choice of a 

solving algorithm is influenced by the cardinal versus ordinal 

nature of the quantities and that this effect is robust among 

adults. Additionally, the 1-step algorithm was significantly 

less used by children than by adults on cardinal (t(109)=3.48, 

p < 0.001, unpaired t-test) but not ordinal (t(109)=1.10, p = 

0.27, unpaired t-test) problems, meaning that children had 

significantly more difficulty than adults using the 1-step 

strategy on cardinal, but not on ordinal problems. 

To test our second hypothesis, we focused on the drawings 

made by the participants. Figure 6 details the rating of the 

drawings depending on the type of quantity used in the 

problems. Drawing score was significantly lower for 

drawings depicting problems with cardinal quantities (M=–

0.55, SD=0.78) than for those describing problems with 

ordinal quantities ((M=0.06, SD=0.87), (t(58)=5.61, p < 

0.001, paired t-test), indicating that problems using ordinal 

quantities led young participants to draw ordinal features 

(axes, intervals, etc.) at a higher ratio over cardinal features 

(sets, groups of elements, etc.) compared to the ordinal 

problems.  

 
Figure 6: Children’s and adults’ mean drawing score 

depending on the type of quantity used in the problems. 

Vertical bars denote 0.95 confidence intervals. 

 

Similarly, among adult participants, problems with cardinal 

quantities (M=–1.48, SD=0.79) led to a significantly lower 

drawing score than problems with ordinal quantities 

(M=0.89, SD=0.86), (t(51)=12.44, p < 0.001, paired t-test). 

In sum, the presence of ordinal (resp. cardinal) quantities 

seems to result in representations featuring a higher number 

of ordinal (resp. cardinal) features, in both children and 

adults. Of note, drawing score was significantly higher 

among children than among adults on cardinal problems 

(t(109)=6.24, p < 0.001, unpaired t-test) whilst significantly 

lower among children than among adults on ordinal problems 

(t(109)=5.00, p < 0.001, unpaired t-test); in other words, 

children included significantly less cardinal features than 

adults while representing cardinal problems, and 

significantly less ordinal features than adults when 

representing ordinal problems. 

Discussion 

The fact that the cardinal versus ordinal distinction in 

problem statements influenced both children’s and adults’ 

solving strategies confirmed the robustness of these 

interpretative effects, even with experienced solvers who 

should not meet any difficulty in solving such simple 

problems. Indeed, children performed about half as well as 

adults, yet the distinction between cardinal and ordinal 

problems remains significant in both populations. 

Additionally, adults’ performances were significantly higher 

on cardinal, but not on ordinal problems, indicating that when 

semantically congruent with the 1-step strategy, world 

semantics help children achieve adult-like performance on 

the task. 

The elicited drawings provided an empirical confirmation 

of the importance of the ordinal versus cardinal distinction in 

both populations. The fact that children produced drawings 

that had significantly fewer ordinal (resp. cardinal) features 

on ordinal (resp. cardinal) problems may be attributed to a 

global lack of details in their drawings, that nevertheless did 

not prevent a significant distinction between cardinal and 

ordinal drawings to appear among children. Additionally, 

children may have more difficulties to produce a graphic 

implementation of ordinal situations, which would explain 

their poor ordinal score (0.06) for ordinal problems. This calls 

for further research on the topic. 

Overall, the results of both the drawing and the solving 

tasks show that the participants’ semantic knowledge about 

the quantities used in the problems (i.e. their experience with 

counting the number of apples in a bag, adding the price of 

every item on a bucket list, calculating the arrival time of 

their train or using the elevator) have a decisive influence on 

the encoding of arithmetic word problems. The distinction 

introduced between ordinal and cardinal problem statements 

was reflected in the representations constructed (as shown by 

the drawings made by the participants) and led them to use 

different solving algorithms, even when asked specifically to 

use the shortest strategy they could find. Furthermore, the fact 

that those effects could be highlighted both with young pupils 

and adults indicates the robustness of such encoding 

constraints. The ontological distinction hypothesized 

between ordinal and cardinal representations was thus 

confirmed on two complementary tasks. 

The use of a double measure of the influence of the solvers’ 

knowledge about the world allowed us to gather converging 

clues shedding light both into the representations abstracted 

and into the algorithms subsequently implemented. By 

focusing on the role of semantic properties on the initial 

encoding of a problem, we hope to gain a finer understanding 

of arithmetic problem solving in its whole, and to pave the 

way for accounting for the interactions between world 

semantics, mathematical semantics and algorithms. 



Understanding the determinants of problems’ representations 

is a crucial step to identify the potential pitfalls and dead ends 

born from semantic incongruence (Gros, Sander & Thibaut, 

2016) as well as to help develop analogical transfer between 

isomorphic problems by promoting semantic recoding among 

the learners (Gamo, Sander & Richard, 2010; Gros, Thibaut 

& Sander, 2015). Doubtlessly, the educational opportunities 

resulting from a better understanding of the conditions 

necessary for semantic recoding and analogical transfer 

between problems are promising. 
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