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Abstract
Categorization research has demonstrated the use of both rules and remembered exemplars in classification, although there is
disagreement over whether learners shift from one to the other or use both strategies simultaneously. Theoretical arguments can
motivate predictions for both rule use and exemplar use increasing with more practice. We describe a single large experiment (n =
190) that manipulated the number of training items (category size), the number of presentations of each training item, and the
similarity between the training and the transfer stimuli in order to discover when rules and exemplars are most likely to be used.
Results showed that rules and exemplars both influenced classification and that exemplars were used more often with smaller
categories, with more training on items, and when test items were similar to training items. There was no consistent evidence of a
shift from rule-based to exemplar-based categorization with more learning. Importantly, we found a number of conditions in
which rules and exemplars were both used, even within individual participants. We discuss our results in terms of hybrid models
of classification.
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Studies of category learning have contrasted rule-based and
exemplar-based processes. According to rule-based accounts,
people learn defining rules for categorization and apply them
in subsequent categorizations (see the seminal studies by
Bruner, Goodnow, & Austin, 1956; Bourne, 1970). Rule ap-
plication is generally defined as attending to a subset of the
stimulus features, with one or more features combined deter-
ministically to decide membership. On the other hand, in
exemplar-based categorization, people are assumed to evalu-
ate the similarity of a novel item as a whole to remembered
exemplars of known categories (Estes, 1986, 1994;Medin and
Shaffer, 1978; Nosofsky, 1984; Nosofsky & Palmeri, 1997;
see also Wills, Inkster, & Milton, 2015). This debate has

paralleled similar controversies in other cognitive domains
such as language (e.g., Pinker, 1999), problem solving (e.g.,
Medin & Ross, 1989), skill acquisition (e.g., Anderson,
Fincham, & Douglass, 1997), and reasoning (e.g.,
Norenzayan, Smith, Kim, & Nisbett, 2002; Sloman, 1996).

Recently, several hybrid theories based on abstract repre-
sentations (e.g., rules or prototypes) and similarity to remem-
bered exemplars have been proposed. One key question has
been over the respective role of rules and similarity to prior
exemplars when they are both available (see Allen & Brooks,
1991; Erickson & Kruschke, 1998, 2002; Johansen &
Palmeri, 2002; Love, Medin, & Gureckis, 2004; Nosofsky,
Palmeri, & McKinley, 1994; Rips, 1989; Smith & Minda,
1998; Smith, Patalano, & Jonides, 1998; Thibaut, Dupont, &
Anselme, 2002; Thibaut & Gelaes, 2006). Hahn and Chater
(1998, p. 224) suggested that Brules and similarity both have
their respective roles, not just side by side, with similarity
covering some domains and rules others, or doubling up in
parallel, but in an active interplay within a single task.^

Is an explicit rule provided or not?

One can distinguish at least two kinds of studies investigating
rules and categorization. In the first and most popular kind,
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participants do not receive any classification rule at the onset
of the experiment. The stimuli are introduced one by one, and
the rule is learned through corrective feedback. Most authors
assume that the abstracted rules, if any, are single-dimension
categorization rules that do not work perfectly (e.g., Johansen
& Palmeri, 2002; Nosofsky et al., 1994; Ward & Scott, 1987).
For example, Johansen and Palmeri found that when the ex-
perience with the category was limited, participants tried sim-
ple rules and generalized on the basis of these single diagnos-
tic dimensions, even though the rules were not perfect. Later
in learning, generalization was mostly driven by similarity to
exemplars. Johansen and Palmeri described this change as a
shift from rule-based to exemplar-based classification (see
also Raijmakers, Schmittmann, & Visser, 2014). As noticed
by Smith, Murray, andMinda, (1997, p. 667), this might result
from the category structure of the categories, which is often
very difficult to grasp, and push participants towards exemplar
encoding, especially if one considers the (often) very limited
number of training stimuli. Note that in this kind of paradigm,
it can be difficult to disentangle exemplar and rule influence
because one does not know whether and which rule or imper-
fect rule plus exemplar encoding learners follow.

In a second kind of category learning design, participants
receive an explicit, perfect rule for classification. Using this
design, Lee Brooks and colleagues (Allen & Brooks, 1991;
Brooks, Norman, & Allen, 1991; Regehr & Brooks, 1993)
showed that classification of transfer stimuli was still influ-
enced by their similarity to the training instances. Participants
were trained in applying a rule to a limited set of items (eight
stimuli presented five times). The key result was that in a
following transfer phase, Bgood transfer items^ (GoodT),
items that were similar to training items and belonged to the
same category, were categorized faster and far more accurately
than Bbad transfer items^ (BadT), items similar to training
items but belonging to the opposite category according to
the rule. Because both types of items were equally classifiable
by the rule, a difference between GoodT and BadT items is
interpreted as being due to exemplar-based processing.

These early studies revealed that similarity to exemplars
had a large effect on performance that was most likely to exert
its influence when exemplars were both featurally and holis-
tically individuated (i.e., the instances of a given part are dif-
ferent from one stimulus to the other), and the overall shapes
of the animals are distinctive. For example, in our Fig. 1, all
the instances’ legs are different across stimuli (see Regehr &
Brooks, 1993, Experiments 3A and 3B) with rules involving
several features (e.g., two out of three among F1, F2, and F3).
In contrast to Regehr and Brooks, Lacroix, Giguère, and
Larochelle (2005) extended these results to stimuli made up
with features which had the same perceptual implementation
across stimuli (e.g., the same round or square body shape
appeared in the stimuli). However, even though significant,
the targeted difference was very tiny (e.g., 7 % errors for BadT

items vs. 3 % errors for the training twin in Experiment 2) and
this percentage decreased with more trials.

Thibaut and Gelaes (2006) showed that similarity effects
were also obtained with features that were spatially separated
rather than integrated into a whole. Interestingly, they also
found that the exemplar effect depended on the similarity be-
tween transfer stimuli and their training twins. We will come
back to this issue in our experiment. Finally, Hahn, Prat-Sala,
Pothos, and Brumby (2010, Experiment 2) extended exemplar
effects to a design in which simple, one-feature rules (e.g., Ball
As have a triangle^) were used and with stimuli which were
collections of features, rather than integrated wholes as in
Brooks and colleagues’ studies. However, again, the exemplar
effects were small (around 5 %, vs. 20–40 % or more in
Regehr & Brooks or Thibaut & Gelaes) and were obtained
with a different design.

Overall, there is strong evidence for exemplar effects with
strongly individuated stimuli or features in the case of additive
rules (Regehr & Brooks, 1993; Lacroix et al., 2005; Thibaut &
Gelaes, 2006), and there is consistent, but much smaller, evi-
dence from single-feature rules with stimuli that appeared as a
collection of features rather than as an integrated whole (Hahn
et al., 2010) or that were composed of interchangeable fea-
tures (Lacroix et al., 2005). A generalization of these results is
that when memory for learning items is made stronger and
more distinctive, the exemplar effects are larger.

Does more training increase rule-based
or exemplar-based processes?

In the present paper, we used Regehr and Brooks’s paradigm,
which gave the largest exemplar effects. Starting with condi-
tions that are already known to give an exemplar effect, the
key issue was whether rule or exemplar similarity would take
over when more trials or more training stimuli were provided
during the training phase or whether there was evidence for
simultaneous use of both sources of categorization.

Previous theories lead to opposite predictions. Indeed, the
effect of learning has been conceptualized either as a shift
from abstraction-based classifications (rule-based in
Johansen & Palmeri, 2002, or prototype-based in Smith &
Minda, 1998) to exemplar-based classifications or as a shift
from exemplar-based classifications to abstraction-based clas-
sification (especially when no rule is available during learn-
ing) (Homa, Sterling, & Trepel, 1981).

One main hypothesis is that when exemplars are encoded
more distinctively and accurately, exemplar-based classifica-
tion is more likely to occur. As a result, increasing the number
of presentations of the stimuli during the training phase could
increase the difference between good transfer (GoodT) and
bad transfer items (BadT). As Smith et al. (1998) put it, at
the beginning of the training phase, when subjects are still
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learning to categorize the objects, the representation of the
entire object will be imperfectly retrieved. Consequently, ex-
emplar retrieval should have little influence on categorization
until automatic memory retrieval starts to take over. Logan
(1988) posits the development of automaticity as a shift from
algorithm-based to instance-based processing. Encoding and
retrieval from memory of all information associated with a
stimulus are unavoidable consequences of attention. As peo-
ple gain experience with the training exemplars, their later
performance should become more influenced by these exem-
plars (see also Lamberts, Brockdorff, & Heit, 2003; Nosofsky

& Palmeri, 1997). Nosofsky (1988) found that instance fre-
quency influences category knowledge directly, positing that
repetition of the training exemplars produces multiple traces
of the item that provide more evidence for category member-
ship and result in stronger exemplar similarity effects (see also
Logan & Etherton, 1994). This was confirmed by Smith and
Minda (1998) who demonstrated an early advantage for the
prototype model and a late advantage for the exemplar model
under the assumption that exemplars tend to retrieve them-
selves with more practice (see Johansen & Palmeri, 2002,
and Nosofsky & Zaki, 2002, for discussion).

a b

Fig. 1 a Eight original training stimuli used in presentation types 8-5 and
8-30. b The 12 additional training stimuli used in presentation types 20-2
and 20-12. Their status (positive or negative training item) depends on
which of the four rules is used. Note that depending on the rule, the same
stimulus will be classified as a Digger or as a Builder. This is true for both

training and transfer stimuli. For example, according to Rule 1, BSix legs,
spots present, and angular body^ Stimulus 1 (upper left) on Figure 1
would be a Digger, but according to Rule 3, “Six legs, spots absent, and
round body^ it would be a Builder
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Following this logic, within our design, increasing the
number of presentations should maximize the priority of ex-
emplar influence, because the training exemplars should be-
come more distinctively encoded, which should promote
exemplar-based categorization. Increasing similarity between
the training and transfer stimuli should also increase exemplar
influence, because the transfer stimuli will evoke their training
twin memory trace more strongly. For the same reasons, a
smaller number of training exemplars should lead to a larger
exemplar effect: Each exemplar should be more distinctively
stored in memory and be more directly evoked by its transfer
twin. In this vein, Smith and Minda (1998) argue that small
exemplar sets favor exemplar-based processes, presumably by
reducing interference among similar category members.
Homa and colleagues (Homa & Vosburgh, 1976; Homa,
Burruel, & Field, 1987; Homa, Sterling, & Trepel, 1981)
found evidence that the advantage of old over new exemplars
decreases when the number of training instances increases.
However, in their experiments, the categories could not be
identified by a rule (see also Smith & Minda, 2000).

When a perfect rule is available, increasing the number of
stimulus presentations increases the expertise of using that rule.
With more practice, the explicit rule becomes more automatized,
consuming fewer resources than at the beginning of the experi-
ment (Shiffrin & Schneider, 1977). People focus on the defining
features, becoming more efficient at extracting the abstract fea-
tures for categorization and at ignoring the idiosyncratic aspects
of each exemplar, as confirmed in eyetracking studies (Rehder &
Hoffman, 2005). As a result, exemplars cease to influence per-
formance (e.g., Shiffrin & Schneider, 1977; see also the ACT-R
theory of skill acquisition, Anderson, 1993; Anderson, Fincham,
& Douglass, 1997; Smith et al., 1998).

A third possibility is that both strategies are used. However,
there is a further theoretical issue at stake, namely whether
these strategies compete. It is possible that any given individ-
ual will carefully follow the provided rule or else will use
exemplar similarity, but not both. Thus, both strategies could
be used across participants but not within them. The COVIS
model suggests this possibility by its name, COmpetition be-
tween Verbal and Implicit Systems, but its workings are actu-
ally more complex. Ashby, Alfonso-Reese, Turken, and
Waldron (1998) propose that an implicit associative system
and rule-learning occur in parallel. Learners discover which
system is more accurate, and the two systems are weighted
accordingly. On any one trial, both systems compute their
answer and the strongest one determines the response. As this
is a function of the weighting of the two systems and the
identity of the particular stimulus, both systems can contribute
to responses over trials, even if one is dominant. Ashby et al.
propose that rule use is dominant at the beginning, given sub-
jects’ expectations about such experiments and also the ab-
sence of any implicit learning. Their theory suggests that rule
learning and other forms of learning can co-exist and

potentially both have an effect on a given person’s behavior,
even in individual trials (see Hahn et al., 2010). We attempt to
identify whether a given individual in our study uses both.

Goals of the experiment

Previous studies have sought to establish under which condi-
tions exemplar effects can be obtained. The major goal of the
present experiments is to explore, within the Regehr and
Brooks paradigm, how training conditions influence the use
of both rules and exemplars and whether we can find simul-
taneous use of both strategies. This is a crucial issue that has
not been systematically studied.Most past studies have sought
evidence for exemplar effects but have not explicitly ad-
dressed the possibility that rules might also be used at the
same time. Here we focus on distinctive stimuli (i.e., holisti-
cally individuated) for which the evidence for exemplar ef-
fects was the strongest (as reviewed above). We manipulated
variables likely to increase or decrease the use of exemplars:
category size, the number of stimulus presentations, and the
similarity between training and transfer stimuli.

Knowing the rule is a critical component of these predictions.
People do not always spontaneously notice and use rules even
under advantageous conditions (Murphy, Bosch, & Kim, 2017).
In our experiment, participants are explicitly informed of the rule
at the start. Our study then asks whether exemplar processing has
an effect in spite of knowledge of the rule, and under what
training conditions such effects are most likely to be found.

Design

Exemplar effects are evidenced by differences between old
and new (transfer) stimuli or between transfer stimuli similar
to an exemplar from the same category (GoodT) and stimuli
similar to an exemplar from the opposite category (BadT).
Rule use would be confirmed by successful classification
and the absence of these exemplar effects. However, both
patterns could be found, as when there is above-chance clas-
sification even for BadT items, suggesting rule use even if
there is a similarity effect.

Our starting point was the presentation type 8-5 (eight
training stimuli presented five times) used in Experiments 1
and 2 from Thibaut and Gelaes (2006). We compared four
category structures varying in the number of exemplars and
their repetition during learning: 8-5, 8-30 (i.e., eight training
stimuli presented 30 times), 20-2, and 20-12.

The contribution of rule-based and exemplar influence was
assessed through two effects. First, a difference between BadT
and GoodT items, which we refer to as the BadT-GoodT effect
and, second, a reliable difference between training and transfer
phases (i.e., old vs. new items) would each suggest an exemplar
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influence on the classification of transfer items. Indeed, if per-
formance is entirely rule-based, classification accuracy and re-
sponse times (RTs) of old and new items should be equivalent.

We expected three manipulations to reveal differences in
exemplar use. First, more presentations of the same set of
stimuli should strengthen exemplar memory. Thus, finding a
similar pattern of results across stimulus exposures will be a
sign of rule use. The second manipulation was category size,
when the number of training exemplars increases but the total
number of trials remains the same (e.g., 20 training stimuli
presented 12 times vs. eight training stimuli presented 30
times). Again, no category size influence on the exemplar
effect, would suggest the dominance of rule use across condi-
tions. Third, we varied the similarity between training and
transfer items. If participants’ performance is influenced by
rule use only, then similarity between training and transfer
items should have no effect. Thibaut and Gelaes (2006) found
no exemplar effect in Experiment 1 but a significant one in
Experiment 2, when the similarity between test items and the
learning items was greater. Thus, we will focus on how in-
creasing the number of trials will differentially affect the ex-
emplar effect in both similarity conditions.

Of particular interest is a pattern showing evidence of both
rule and exemplar use within individual participants. As noted
above, when classification on BadT items is worse than that of
GoodT items, it indicates that people are relying on similarity
to learned exemplars. If performance on BadT items is simul-
taneously above chance, however, that also indicates rule use,
as reliance solely on similar exemplars would result in 0 %
accuracy (BadT items are similar to an exemplar in the
Bwrong^ category). Thus, we looked in particular for this pat-
tern, which would give evidence for simultaneous rule and
exemplar use, not only within specific conditions but also
within individual participants. We also looked for individuals
who displayed (virtually) perfect accuracy—suggesting rule
use—together with longer RTs for BadT items than for GoodT
items—suggesting that despite using the rule, they were
slowed down for BadT items similar to examples from the
opposite category. To the best of our knowledge, past research
has not done this. Overall, we investigated under which con-
ditions the exemplar effect would be the largest despite evi-
dence for rule use, and we sought individual data that would
witness unambiguously the simultaneous use of rule and ex-
emplars. This is a considerable extension of previous studies
devoted to these issues.

Method

Participants

One hundred and ninety university undergraduates participat-
ed as unpaid volunteers, 24 per category type, except the

category type 20-2, in the lower similarity condition, which
had 22 participants. The lower and higher similarity condi-
tions were not run at the same time, so participants were not
randomly assigned to the high and low similarity category
types. Rather, they were randomly assigned to each category
type within the two similarity conditions. However, all sub-
jects came from the same population.

Materials

Training stimuli Two sets of training stimuli were introduced
in two similarity conditions. The first set, for category types 8-
5 and 8-30, was composed of the eight original stimuli created
by Regehr and Brooks (1993) in their experiment 3A. They
were line drawings of imaginary animals (see Fig. 1, Cell A).
The animals were made up from five binary dimensions: num-
ber of legs (two or six), body shape (round or angular), spots
(present or absent), tail length (short or long), and neck length
(short or long). The second set of stimuli, used in the category
types 20-2 and 20-12, contained twenty training items, the
eight original stimuli from Regehr and Brooks, plus twelve
new training items (Fig. 1, Cell B) constructed according to
the same specifications as the original stimuli (see Table 1 for
a logical description of the stimuli).

Transfer stimuli There were eight transfer stimuli. Each trans-
fer stimulus was based on one of the original set of eight
training stimuli (the twin training items). The difference be-
tween a transfer stimulus and its training twin was either on
the dimension of spots (lower similarity condition) or of body
shape (higher similarity condition, see Fig. 2 A). For example,
if body shape was round on the training item, the body shape
of its transfer twin was angular, and vice-versa. These manip-
ulations gave rise to four types of items:

1. Positive training items: twins of GoodT.
2. Negative training items: twins of BadT.
3. Positive transfer (GoodT) items: A stimulus seen in the

transfer phase that, according to the rule, was in the same
category as its twin training stimulus.

4. Negative transfer (BadT) items: A stimulus seen in the
transfer phase that, according to the rule, was in the cate-
gory opposite to its twin training stimulus.

It is important to note that the training stimuli get the names
positive and negative only by reference to the status of their
transfer twin, a positive training item being the twin of a trans-
fer item belonging to the same category, whereas a negative
training item is the twin of a transfer belonging to the other
category in terms of the rule. Thus, there is no reason to expect
that they will lead to different levels of performance.
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The difference between the body shape and the spots trans-
formations gave rise to the Similarity factor (see Thibaut and
Gelaes, 2006, p. 1408-9). In order to establish whether body

shape transformations would give more similar twin stimuli
than transformations on spots, Thibaut and Gelaes asked par-
ticipants to choose which of the two types of transfer stimuli

Table 1 Logical description of the stimuli

Item n° No. of legs Body shape Spots Neck length Tail length Category according to RULE 1 (Builder = Six legs, Spots, Angular body)

Training stimuli

1 1 0 0 0 1 Digger

2 0 0 1 1 1 Digger

3 1 1 0 1 1 Builder

4 0 1 1 0 1 Builder

5 0 0 0 0 0 Digger

6 1 0 1 1 0 Builder

7 1 1 1 0 0 Builder

8 0 1 0 1 0 Digger

9 1 1 1 1 0 Builder

10 1 0 0 1 1 Digger

11 0 1 1 1 1 Builder

12 0 0 0 1 0 Digger

13 1 0 1 0 0 Builder

14 0 0 1 0 1 Digger

15 1 1 0 0 1 Builder

16 0 1 0 0 0 Digger

17 0 1 1 1 0 Builder

18 0 1 0 0 0 Digger

19 1 0 1 1 1 Builder

20 1 0 0 0 1 Digger

Transfer stimuli in the low similarity condition

1 1 0 1 0 1 Builder

2 0 0 0 1 1 Digger

3 1 1 1 1 1 Builder

4 0 1 0 0 1 Digger

5 0 0 1 0 0 Digger

6 1 0 0 1 0 Digger

7 1 1 0 0 0 Builder

8 0 1 1 1 0 Builder

Transfer stimuli in the high similarity condition

1 1 1 0 0 1 Builder

2 0 1 1 1 1 Builder

3 1 0 0 1 1 Digger

4 0 0 1 0 1 Digger

5 0 1 0 0 0 Digger

6 1 1 1 1 0 Builder

7 1 0 1 0 0 Builder

8 0 0 0 1 0 Digger

Note. For the training stimuli, Stimuli 1–8 are used in presentation types 8-5 and 8-30. Stimuli 9 to 20were added in presentation types 20-2 and 20-12. 0
and 1 represent the following values: number of legs, 1 = six legs, 0 = two legs; body shape, 1 = angular, 0 = round; spots, 1= present, 0 = absent; neck
length, 1 = long, 0 = short; tail length, 1 = long, 0 = short.

The eight transfer stimuli were transformations of the training stimuli 1–8 on the dimension of Bspots^ in the low similarity condition and on the
dimension of Bbody shape^ in the high similarity condition.

The last column gives the category membership (Builder or Digger) of the training stimuli and of the eight transfer items when Rule 1 is used
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was the most similar to the corresponding training stimuli (the
standard). The mean percentage of Bbody shape^ choices was
76 %, which differed significantly from 50 %, t(9) = 3.8, p <
.005. Then, they found large classification differences in their
main experiments due to this similarity manipulation.

Participants categorized the stimuli into two categories,
Builders and Diggers, using a three-feature additive rule that
was a combination of three dimensions: number of legs, body
shape, and spots. An animal was classified as a Builder if it
possessed a majority of the Builders’ features (at least two of
the three Builder features, see below); the four other animals
were deemed as Diggers. The values of the two irrelevant
dimensions (tail length and neck length) appeared equally
often in the two categories and were not diagnostic. Four rules
were used across participants to counterbalance the stimuli
across category types. This ensured that each transfer stimulus
served as both a GoodT and a BadT item, depending on the
rule. Thus, any difference between GoodT and BadT condi-
tions could not result from differences associated to irrelevant
characteristics of the stimuli (see Thibaut & Gelaes, 2006, for
a methodological discussion).

Builders were defined as follows:

Rule 1 - Six legs, spots present, and angular body. (For
example, according to this rule the first item

(upper left) in Fig. 1 would be a Digger [and
Negative training] and stimulus Transfer 1 in
Fig. 2 would be a Builder, thus a BadT item.)
See Table 1 for the classification of training and
transfer stimuli according to Rule 1.

Rule 2 - Two legs, spots present, and angular body.
Rule 3 - Six legs, spots absent, and round body. (For exam-

ple, the first item (upper left) in Fig. 1 would be a
Builder and stimulus Transfer 1 (upper left) in Fig.
2 would also be a Builder, thus a GoodT item.)

Rule 4 - Two legs, spots absent, and round body.

Procedure

Participants were tested individually. They were seated at
about 70 cm from the screen of an AppleMacintosh computer.
Superlab was used to control the experiment, present the in-
structions and the stimuli, and record the answers. Participants
had to press one of two keys (Builder = key 4 and Digger =
key 5) on the numerical keyboard tomake their classifications.
The reaction time was the interval between the onset of stim-
ulus presentation and the response. The stimuli were displayed
until the answer was given. The experiment was composed of
two phases, a training and a transfer phase.

a b

Fig. 2 a Transfer stimuli used in the low similarity condition. b Transfer
stimuli used in the high similarity condition. Compare to corresponding
cells of Fig. 1. The eight transfer items were transformations of the

training stimuli (Fig. 1) on the dimension of spots in the low similarity
case and on the dimension of body shape in the high similarity case
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Training phase Participants were told that they were to learn to
classify line drawings of imaginary animals into two catego-
ries according to the explicit categorization rule provided to
them. The rule was written on a sheet of paper placed between
the keyboard and the screen. It remained in view during the
entire experiment. Participants had to categorize the training
stimuli as quickly and as accurately as possible. In the 8-5 and
8-30 category types, the eight training stimuli appeared five
and thirty times respectively (i.e., 40 and 240 trials). In the 20-
2 and 20-12 category types, the 20 training stimuli appeared
two and 12 times (i.e., 40 and 240 trials). Within each block of
eight or 20 items, stimuli were presented randomly. Feedback
followed each response.

Transfer phase The eight transfer stimuli were presented ran-
domly. There was no feedback during this phase. However,
the transfer phase started with four training stimuli in order to
familiarize participants with the absence of feedback. As in
Regehr and Brooks (1993), we asked participants to classify
the animals according to the rule as quickly and as accurately
as possible.

Results

The raw data are archived at https://osf.io/tnqjg/ . The main
aim of our analyses is to provide two complementary types of
evidence of exemplar effects. Recall that participants were
given the explicit categorization rule and that a high level of
accuracy depends on the use of this rule. Pure rule use is
evidenced by cases in which there is little or no evidence of
a difference between GoodT and BadT items or between
training and transfer items. Additionally, if performance is
governed by rule use only, there should be no interaction
involving the factor of similarity between training and
transfer items.

In the first analyses, we looked at the exemplar effect as a
function of training conditions and level of similarity between
training and transfer items. In order to compare these condi-
tions, we carried out two analyses, the first with the difference
between BadT and GoodT test items as the dependent vari-
able, and the second one with the difference between Transfer
and Training items as the dependent variable. These analyses
will tell us in which conditions the differences we are looking
for, i.e., revealing exemplar influence, are larger or smaller. If
performance is totally under rule control, no differences
should be observed.

In the second analyses, we compared higher performing
participants (thus who followed the rule) with lower
performing participants (presumably relying on exemplar
similarity). Given that rules presumably control the most
accurate performers, would they still show evidence of
exemplar influence?

Comparing training conditions

Our first analyses will focus on proportions of errors and RTs
as a function of training condition and similarity level. As
mentioned above, we focused on two difference scores, each
directly reflecting exemplar use: the difference between BadT
and GoodT test items and the difference between old
(training) and new (test) items. (We also carried out a global
analysis of variance on the raw classification and RT data, in
which the variables similarity (higher, lower), stimulus type
(positive, negative), phase (training, transfer), and category
type (8-5, 8-30, 20-2, 20-12) were crossed (see Table 2 for
the resulting means). However, as a number of critical results
involved higher-level interactions followed up by contrasts,
the result is very difficult to follow. Therefore, we have placed
this analysis in the Supplementary Materials for those who are
interested. Here we report the theoretically significant analy-
ses using the difference scores that directly reflect exemplar
usage.)

Proportion of errors

We first performed a two-way ANOVA on the proportion of
errors for BadT minus proportion of errors for GoodT, with
category type (8-5, 8-30, 20-2, 20-12) and similarity (higher,
lower) as between factors. Exemplar influence is measured by
the size of the difference between BadTand GoodT items. The
ANOVA revealed a significant effect of category type, F(3,
182) = 6.17, p < 0.001, η2P = .09. The TukeyHSD test revealed
that the difference was significantly larger in 8-5 and 8-30 than
in 20-2. The difference between 8-30 and 20-12 was only
marginally significant (p < .07). It also revealed that the
BadT-GoodT effect was significantly larger in the higher sim-
ilarity condition (M = .38) than in the lower condition (M =
.12) F (1, 182) = 43.52, p < 0.00001, η2P = .19. The interaction
did not reach significance (p < .5). Thus, the exemplar effect is
more pronounced with higher similarity and with smaller
numbers of training items.

The second analysis examined the difference between each
transfer item and its training twin, that is GoodT minus
Positive training (Pos) and BadT minus Negative training
(Neg). Since similarity of transfer items is helpful in the first
comparison (GoodT-Pos) but misleading in the second (BadT-
Neg), the difference between training and transfer should be
greater in the latter comparison. Thus comparing these two
differences (hereafter, the Positive-Negative factor) provides
another direct measure of exemplar influence.

The three-way ANOVA on the transfer-training difference
scores, with category type and similarity as between factors
and negative-positive (GoodT-Pos, BadT-Neg) as a within
factor, revealed a main effect of category type, F(3, 182) =
19.72, p < 0.0001, η2P = .24, of similarity, F(1, 182) = 44.35, p
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< 0.0001, η2P = .20, and of negative-positive, F(1, 182) =
108.29, p < 0.0001, η2P = .37. These effects were subsumed
by two significant interactions. The first interaction was the
negative-positive × category size interaction,F(3, 182) = 6.10,
p < 0.001, η2P = .09. Exemplar use would be shown by larger
differences for negative than positive items, due to the effect
of BadT items. As can be seen in Fig. 3, the differences are
small in Pos items but large in Neg items, especially with
smaller categories.

Tukey HSD tests showed that differences were larger for
negative than positive items in the 8-5, 8-30, and 20-12 con-
ditions. The same analysis also showed that the four condi-
tions did not differ significantly for the GoodT-Pos difference.
For the BadT-Neg difference, 20-2 was significantly smaller
than all the other conditions, and 8-5 and 20-12 were signifi-
cantly smaller than 8-30 and did not themselves differ signif-
icantly. Again, more trials with a small set of training items led
to larger exemplar effects.

The second interaction, shown in Fig. 4, was between
negative-positive and similarity, F(1, 182) = 52.52, p <
0.0001, η2P = .22. Tukey HSD tests showed that the positive
and negative differences were not significantly different in the
low similarity case but were in the high similarity case (p <
.05) and that the low and higher similarity conditions did not
differ significantly for the positive differences, but differed
significantly in the negative difference case.

Response times

We conducted the same analyses on RTs as we performed
on the errors. Following standard procedure, we analyzed
RTs of correct trials only, as the time to record an incor-
rect response is not a measure of how long it actually took
to calculate the answer. As a result, we expect to find
similar patterns as with error rates. (If we had included
errors, then no clear predictions could be made, as fast
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Fig. 3 Interaction between negative-positive and category type. The
dependent variable is in terms of proportions. Error bars are standard
errors of the mean. GoodT-Pos stands for difference between GoodT
items and Positive training items. BadT-Neg stands for difference be-
tween BadT items and Negative training items

Table 2 Mean response times and proportions of errors for training and transfer stimulus across category types and similarity conditions (standard
deviations in brackets)

Low similarity High similarity

Training Transfer Training Transfer

Category Type Pos Neg GoodT BadT Pos Neg GoodT BadT

8-5 RTs
(N=24)

1,205
(414)

1,294
(445)

1,373
(421)

1,599
(511)

RTs
(N=24)

1,233
(623)

1,294
(502)

1,501
(510)

2,109
(687)

Errors
(N=24)

0.10
(.18)

0.14
(.22)

0.02
(.07)

0.177
(.24)

Errors
(N=24)

0.09
(.14)

0.05
(.13)

0.03
(.08)

0.47
(.38)

8-30 RTs
(N=24)

598
(123)

642
(122)

1,322
(561)

1,533
(873)

RTs
(N=20)

610
(506)

628
(736)

1,071 (556) 1,818
(883)

Errors
(N=24)

0.03
(.08)

0.02 (.07) 0.01
(.15)

0.3
(.26)

Errors
(N=24)

0.02
(.07)

0.04
(.12)

0.08
(.14)

.604
(.24)

20-2 RTs
(N=24)

1,241
(437)

1,398
(646)

1,337
(406)

1,430
(432)

RTs
(N=24)

1,839
(506)

2,047
(736)

1,619
(556)

1,964
(883)

Errors
(N=24)

.073
(.14)

.21
(.25)

.052
(.10)

.094
(.09)

Errors
(N=24)

.1
(.18)

.052
(.13)

.03
(.08)

.25
(.21)

20-12 RTs
(N=22)

828
(218)

857
(214)

1,168
(324)

1,343
(438)

RTs
(N=24)

898
(429)

742
(276)

865
(224)

1,463
(869)

Errors
(N=22)

.06
(.11)

.07
(.18)

.06
(.13)

.15
(.18)

Errors
(N=24)

.05
(.10)

0
(.00)

.06
(.11)

.42
(.29)

* Note. Pos stands for positive training items Neg for negative training items, GoodT for good transfer items, and BadT for bad transfer items. In the
Category Type column the first number refers to the number of training items and the second to the number of presentations of each training set
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errors would be mixed together with slow correct answers
in some conditions.) Some participants could not be in-
cluded in the RT analyses due to missing data (four par-
ticipants in 8-5, four in 8-30, and two in 20-12 in the high
similarity condition), generally due to no correct re-
sponses in a BadT condition.

We first ran an ANOVA on the BadT-GoodT difference,
with category type and similarity as between factors.
Although there is an above-zero difference in all category
types, suggesting an exemplar effect (see the global anal-
ysis in the Supplementary materials for more details), it did
not differ significantly across category types. The ANOVA
revealed the difference was significantly larger in the high
similarity condition (M = 458 ms) than in the low similarity
condition (M = 175 ms), F(1, 179) = 8.10, p < 0.005, η2P =
.04. The interaction did not reach significance (p < .5).
Thus, the exemplar effect is more pronounced when test
items are similar to the training items.

As in the error analysis, the second RT analysis was a
three-way ANOVA on the transfer-training differences for
both positive and negative items (i.e., GoodT minus
Positive training, and BadT minus Negative training), with
category type and similarity as between factors and
negative-positive as a within factor revealed a main effect
of category type, F(3, 179) = 14.83, p < 0.0001, η2P = .20,

and of negative-positive F(1, 179) = 18.25, p < 0.0001, η2P
= .09. There was a significant interaction between
negative-positive and similarity, F(3, 179) = 7.14, p <
0.01, η2P = .04. Figure 5 shows that the transfer items
(GoodT vs. Pos and BadT vs. Neg) were generally classi-
fied more slowly, but the effect was greater for negative
items. Tukey HSD tests showed that GoodT-Pos and BadT-
Neg did not differ significantly in the low similarity case
whereas BadT-Neg were significantly higher than GoodT-
Pos in the high similarity case (p < .05).

Evidence of parallel use of rule and exemplars:
Analysis of individual profiles

The analyses above show ample evidence of both rule use and
exemplar influence and that the size of the exemplar effect is
modulated by the factors we introduced. A question raised in
the introduction in the context of mixed theories was whether
participants might be using rules while also being influenced
by the exemplars. One sign of this would be to find partici-
pants who had high level of accuracy together with an exem-
plar influence. In the following paragraphs, we present two
analyses providing evidence of individuals following rules
while showing evidence of exemplar influence. The first type
of analysis shows that rule-following participants still made
more errors on BadT than on GoodT items. The second anal-
ysis asked whether the BadT-GoodT effect in RTs is found
across accuracy levels, especially in participants who made
so few errors that they must have been following rules.

In the first analysis, we counted the number of participants
who showed high accuracy (three out of four answers correct)
in the BadT items (explainable by rule use) plus no errors in
the GoodT items. The better performance in GoodT items
suggests exemplar use. There were 38 people who fit this
profile, suggesting usage of both exemplars and rules. Of
course, with these low numbers of errors, such a difference
could result from chance. However, there were only ten peo-
ple who showed the reverse pattern of 1 or more GoodTerrors
and 0 BadTerrors. This difference is significant (Χ2(1) = 16.3,
p < .001). Thus, it seems that there are individuals who gen-
erally followed the rules (having high accuracy even on BadT
items), but still showed a GoodT-BadT difference.

In the second analysis, we asked whether individuals with
high accuracy would still exhibit an exemplar influence as
revealed by a significant difference between GoodT and
BadT in RTs. We selected the 118 participants who were at
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least 75 % correct for BadT items, indicating that they had
relied on the rule for their classifications. Nonetheless, these
subjects were significantly slower in BadT case (M = 1,655
ms) than in GoodT trials (M = 1,331 ms), t(117) = -6.4, p <
0.0001. The same result was obtained when we used a more
stringent selection rule of 100 % correct in BadT items (sug-
gesting perfect reliance on the rule; these participants were
correct on 96 % of GoodT trials). Sixty-eight participants fit
this pattern, and they also answered faster in the GoodT trials
(M = 1422ms) than in the BadT trials (M = 1685ms), t(67) = -
5.01, p < 0.0005. Because the RTs are only for correct trials
that were presumably answered by using the rule (since using
similarity would result in an error), this suggests that both rule
and exemplar information were used in the same trials.

Following the same logic, we compared the size of the
difference between BadT and GoodT items in RTs for partic-
ipants who made few errors and those who had two or more
errors. We ran a mixed two-way ANOVA, with accurate (at
least three out of four answers correct in BadT items) versus
less accurate (two, or less, correct answers in BadT items)
participants as a between factor, and stimulus type (GoodT,
BadT) as a within factor. Results revealed no main effect of
accuracy group, p > .20, a significant effect of stimulus type,
F(1, 178) = 55.17, p < 0.00001, η2P = .24 (GoodT, M = 1268
ms; BadT, M = 1647 ms) and, interestingly, no significant
interaction between these two factors, p > .20. Indeed, the
low and high accuracy groups separately had significant ef-
fects of stimulus type, t(61) = 4.23, p < .001, and t(117) =
6.39, p < .001, respectively. These results show that no matter
the participant type (accurate or making errors), the exemplar
effect remained, suggesting that exemplar effects cannot be
avoided even with careful rule use.

General discussion

We explored rule and exemplar influence in the paradigm
designed by Brooks and colleagues in which people were
informed of a perfect rule for classification. We used the
BadT-GoodT effect and the difference between the training
and the transfer phases as measures of exemplar influence.
We also investigated whether these differences would be
equivalent across various conditions manipulating the number
of trials, the number of different exemplars, and the similarity
between training and transfer items. Finally, we investigated
whether there was evidence of simultaneous rule and exem-
plar influence across our conditions but also within
participants.

Our results show that participants did use both types of
information and did so simultaneously. Exemplar effects were
most in evidence when categories were small, when learning
items were repeated more and when the test items were more

similar to the learning items. There were also clear indications
of rule use. First, the percentage of errors was low at the end of
the training phase (see Table 2). Second, there was no signif-
icant accuracy difference between old and new items at test
when the items were positive (Positive training vs. GoodT) in
any category type, and no significant RT differences in cate-
gory types 20-2, 8-5, and 20-12. Furthermore, in none of the
conditions did BadT errors go over 50 %, as would occur if
similar exemplars controlled performance (as demonstrated
by Allen & Brooks, 1991). The level of accuracy in all cate-
gory types suggests that rules were being used a significant
proportion of time.1

Exemplar and rule influence combined

In order to explain our results, we posit that expertise with
exemplars and the rule both increase with more practice. On
the exemplar side, following Logan (1988), attention towards
the individual exemplars may automatically cause their
encoding into memory, and each encounter with a stimulus
might strengthen the corresponding exemplar’s distinctive-
ness (see also Johansen & Palmeri, 2002; Nosofsky, 1988).
On the rule side, as training proceeds, the selection of the
relevant dimensions improves, and the memory for and the
use of the subset of the rule-defining dimensions becomemore
accurate (e.g., Anderson et al. 1997; Smith et al., 1998).

Our results show that there is no contradiction between
improvements in rule use and exemplar encoding. When ini-
tially subjecting a viewed exemplar to a rule (as they must do
at the beginning of learning), subjects presumably encode the
configuration of features constituting the stimulus, including
the features that are not involved in the rule (see Hahn et al.,
2010). Thus, both strategies may be strengthened with this
practice. By comparison with previous results (see introduc-
tion), one main contribution of our study is to show that the
balance between exemplar influence and rule influence might
change depending on category size, number of trials and sim-
ilarity between training and transfer stimuli.

In the low similarity condition, the difference between the
GoodT and BadT test items was smaller but significant. What
is notable about this effect is that it operates at retrieval rather

1 One might argue that participants are using simpler rules that do “well
enough” at training but lead to errors on the BadT items (see Lacroix et al.
2005; Wills et al. 2015, for discussion). This seems possible when participants
must discover the rule but is less likely when they’re told the rule, which is
constantly in view. Furthermore, it isn’t clear what such a rule could be, given
people’s relatively high level of accuracy. (Almost all learning conditions have
error rates of .10 or under, as reported in Table 2.) If they used only two
dimensions, they would be guessing much of the time. For example, if they
used only the first two dimensions instead of three, Table 1 shows that five of
the eight learning items give opposite answers and so would have to be
guessed on. This is incompatible with the observed accuracy levels.
Analyses at the end of the Results section showed that even those with low
accuracy showed exemplar effects, so their performance cannot be attributed
to the use of imperfect rules.
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than learning—the two similarity groups learned the same
categories but differed in their test items. This suggests that
even the low similarity group, which showed smaller effects
of exemplar use, must have encoded the exemplars well
enough to allow reminding effects.

In the high similarity condition, the similarity between the
training and the transfer stimuli explains the small difference
between Pos and GoodT stimuli and the significant difference
between Neg and BadT items. GoodT items are classified
easily because rule and similarity point to the same category.
In contrast, for the BadT items, similarity and the rule lead to
different categories. When training stimuli are encoded in
memory as distinct exemplars, the more similar they are to
their transfer twins the more this will facilitate classification
of the items in the same category, and the more this will inter-
fere with the classification of items in the opposite category
(BadT items).

Going beyond previous studies relying on the same para-
digm (Hahn et al., 2010; Lacroix et al. 2005: Regehr &
Brooks, 1993; Thibaut & Gelaes, 2006), our study shows that
the balance between exemplar and rule use also depends on
category structure (eight or 20 training stimuli). In this respect,
it is interesting to compare category types 8-30 and 20-12,
which had the same number of learning trials. There was a
larger difference between training and transfer RTs in 8-30
than in 20-12, suggesting a stronger exemplar influence in 8-
30. Although they had the same number of opportunities to
practice rule use, the smaller number of items in 8-30 presum-
ably led to their being encoded more strongly, leading to ex-
emplar retrieval as a faster route to classification than rule use.

There were also significantly more errors in 8-5 than in 20-2,
which elicited few errors. This is consistent with the idea that
with such a high number (20) of exemplars, each presented only
twice, subjects were less able to form a strong memory repre-
sentation that could then enable exemplar retrieval at test. Thus,
they had to rely on the rule, leading to high accuracy. The 8-5
group, with the same amount of learning, did show clearer
exemplar effects. We do not argue that there is no influence of
exemplars (or rules) in some conditions. No doubt some exem-
plars were encoded and had an effect even in large categories.
However, exemplar effects were larger and more robust when
categories were small and the items repeated more often.

Another new and important contribution of our experiment
was that individual participants appeared to be using both
rules and exemplars, even on the same trials. Participants
who were accurate in their classification, which in the case
of BadT items must have been accomplished through rule use
(see Allen & Brooks, 1991), nonetheless showed exemplar
effects in their RT data. Slower responses on BadT items that
were eventually correctly classified suggest a competition be-
tween exemplar information, providing evidence for a nega-
tive response, and rule use, indicating a positive response.
Thus, even high accuracy participants who responded

consistently with the rule had encoded the exemplars and were
influenced by them. Although learners can exert executive
control to overcome the influence of a highly similar exem-
plar, the exemplars still affect their performance.

When we analyzed individual participants, we found more
people with no errors (and fewer with many errors) in the low
similarity condition. This suggests that even though exem-
plars exerted their influence in both similarity conditions, ex-
emplar effects were more important with high similarity. It is
important to note that calling the low similarity Blow^ may be
somewhat misleading. Although participants judged the sim-
ilarity between training and transfer items higher in the high
similarity case, even in the low similarity condition, the sim-
ilarity was quite high, since training and transfer items shared
four out five features. Thus, exemplar effects may drop off
quickly as a function of similarity.

Previous studies focused onwhich characteristics of stimuli
gave rise to exemplar effects. As mentioned in the introduc-
tion, the most compelling evidence was obtained with holisti-
cally individuated stimuli (see Hahn et al., 2010; Lacroix
et al., 2005; Regehr & Brooks, 1993), which is why we started
with such holistically individuated stimuli. If the stimuli had
not been so well individuated (e.g., if each feature appeared in
identical form in each stimulus), the exemplar effects would
likely be less, and we suspect that we wouldn’t have found
exemplar use in as many conditions. Thus, one limitation of
our results is that they primarily apply to cases in which ex-
emplars are fairly distinctive, such as different medical pa-
tients, dogs, or college essays. We cannot say whether they
would also be found in less distinctive categories such as
squirrels or cell phones where memories of individual items
may not be strongly represented.

Rule to exemplar shift

Is there any behavioral evidence for a rule to exemplar (or an
exemplar to rule) shift in the present studies? Recall that a shift
should not be expected in the context of rule verification. A
shift assumes that the exemplar influence requires a large
amount of practice and doesn’t appear immediately. Along
this line, Smith et al. (1998) and Ashby et al. (1998) claimed
that the similarity procedure takes longer to become effective
than the rule procedure. Johansen and Palmeri (2002) and
Raijmakers et al. (2014) have described a shift from rules
to exemplars resulting from supplementary practice with
the categorization task (see also Pothos, 2005; Smith
et al., 1998; Smith & Minda, 1998, 2000). Homa et al.
(1981, 1987) made the opposite claim, that classifications
become more prototype-based, i.e., more abstraction-
based, with more expertise with the task. However, in their
task, classification could not be accomplished by a rule,
and the abstraction had to be learned.
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Our results showed that exemplar effects were modulated
by practice and by the number of training stimuli. The signs of
exemplar use were generally larger with more practice in the
learning phase (compare 8-5 to 20-2 and 8-30 to 20-12 in Fig.
3 and Fig. S2 in the Supplementary Materials). However, ex-
emplar effects were still found at our lowest levels of expo-
sure. The GoodT-BadTeffect was present in 8-5—that is, after
40 learning trials Also, BadT items were significantly slower
thanNegative training items in 8-5, as well as in the conditions
with more practice. These results suggest that exemplars exert
their influence with a small number of presentations even
though there is still room for performance improvement, as
suggested by the vast decrease in RTs in the training phase
between the 8-5 and 8-30 conditions. Interestingly, the only
difference between Positive training items and GoodT items
was obtained in the 8-30 case (see SupplementaryMaterials B
for evidence). This suggests that extremely fast exemplar ac-
cess requires a large number of presentations of a small num-
ber of exemplars. In sum, even with this very predictable rule,
exemplar similarity could exert its influence, which indicates
that participants’ selective attention never became optimal (see
Rehder & Hoffman, 2005).

Hybrid models of categorization

A number of hybrid models have been proposed in recent
years. However, they were meant to deal with experimental
situations that differ broadly from the one displayed here,
where no rule is provided at the onset of the experiment
(e.g., Smith & Minda, 1998). On the one hand, some models
posit that the same module performs both types of computa-
tions. For example, in ACT-R (Anderson & Betz, 2001),
PRAS (Vandierendonck, 1995), and SUSTAIN (Love et al.,
2004), rules and exemplars are combined in the same repre-
sentational system. On the other hand, in ATRIUM (Erickson
& Kruschke, 1998, 2002), rule-based and exemplar-based in-
formation can be stored in distinct modules that compete. As
discussed by Johansen and Palmeri (2002), a number of dif-
ferent architectures are compatible with the same set of results.
Our design was not built to test these models. What our results
show is that more experience with the rule (more training
trials) and higher similarity between training and test items
generally meant more exemplar influence, and that the most
accurate participants still displayed exemplar influence in both
accuracy and RTs.

Our results generally fit with Smith et al.’s (1998) descrip-
tion of categorization, linking rule-based categorization with
analytic and strategic processing, differential weighting of a
small subset of relevant attributes, and linking similarity-
based behavior with holistic and automatic processing, equal
weighting of attributes, and matching concrete information
(Hahn & Chater, 1998; Norenzayan et al., 2002; Pothos,
2005; Regehr & Brooks, 1993). We have shown that these

two procedures are used in parallel but that depending on
the structure of the stimuli (e.g., the training-transfer similar-
ity, stimulus distinctiveness) and the category (e.g., category
size), the influence of each component might differ. However,
we did not find that even highly accurate participants could
Bturn off^ the exemplar route to classification, so any model
claiming that only the more accurate path would be used
would have difficulty accounting for these results. When a
rule is available, other information can intrude itself into the
classification decision. However, this intrusion depends on the
structure of the training and the test stimuli.
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