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Abstract 

 In this paper, I argue that common data transformations used for statistical modelling 

are not inherently problematic. Depending on the research question, transformation can be 

appropriate or even necessary. The paper also discusses the often-overlooked impact of 

decision-related processes (e.g., rhythmic timing) on behaviour and how such biases can 

often unintentionally confound research designs. More narrowly, the current paper considers 

a recent debate about the list-level proportion congruent (LLPC) effect, which is the finding 

that congruency effects (e.g., in the Stroop task) are reduced when most trials are incongruent 

relative to when most trials are congruent. The LLPC effect is typically interpreted as 

evidence for conflict-driven attentional control (conflict monitoring). However, another view 

proposes that a rhythmic responding bias (temporal learning) explains the effect. In a recent 

article, Cohen-Shikora, Suh, and Bugg (2019) challenged some of the evidence for the latter 

account. One key question they raise is whether it is appropriate to inverse transform 

(essentially: de-skew) response times when using linear mixed effect modelling. The authors 

argued that this transform is problematic and presented a series of analyses that they argued 

demonstrate both (a) that there are minimal concerns about temporal learning confounds, and 

(b) that conflict monitoring clearly contributes to the LLPC effect. The present article 

presents new analyses and demonstrates that neither of these two key conclusions of Cohen-

Shikora and colleagues are justified. More global implications for linear mixed effect 

modelling are discussed, including an analysis of when data transformations should or should 

not be used. 

 

Keywords: temporal learning, data transformations, conflict monitoring, cognitive control, 

attention, proportion congruent effect, mixed models 
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Introduction 

 In experimental psychology, the influence of decision-based factors on performance is 

often overlooked (see Grosjean, Rosenbaum, & Elsinger, 2001). Frequently, for instance, a 

researcher might be interested in how quickly participants can respond to different types of 

stimuli, where the influence of the content of the items on processing speed, attention, etc. is 

of interest. However, many popular manipulation types can also influence decision-based 

processes, such as the evidence accumulation criterion that participants set for themselves 

before accepting a potential response alternative and executing it. As will be discussed in the 

present report, one example of this is studies in which the proportion of different filler item 

types is varied and researchers assess how performance on some target items is influenced by 

the type of fillers. The typical experimental logic in this type of study is that performance on 

target trials might be influenced by the content of fillers (e.g., congruent vs. incongruent, easy 

vs. hard, positive vs. negative, etc.). However, as I will argue in this manuscript, this type of 

design can also produce rhythmic timing biases. In particular, a faster pace in a condition 

with faster-to-identify fillers relative to a condition with slower-to-identify fillers can 

influence performance on target trials simply by virtue of the task rhythm. The current report 

will focus on one very specific example of this from the attentional control domain, but the 

same concerns equally apply to any other domain making use of similar manipulations. 

 The current report will also consider the appropriateness of data transformations when 

analysing data. In particular, this paper will consider a series of papers from Balota, 

Aschenbrenner, and Yap (2013), Lo and Andrews (2015), and, more centrally, Cohen-

Shikora, Suh, and Bugg (2019) that have asked whether or not the typical process of applying 

inverse transformations (i.e., 1 / observation) to heavily skewed data typical of response times 

is appropriate when making use of linear mixed effect (LME) models. While the above-

mentioned reports have been rather critical of this standard analysis approach, the present 



DATA TRANSFORMATION  4 

paper will present a defense of this analysis approach. More precisely, it will be argued that 

preference for analyses on raw versus transformed data often depends on the research 

question: sometimes transformation is not only acceptable, but also appropriate. Again, the 

present report will focus primarily on one specific research question from the attentional 

control domain, but the present manuscript will highlight how transformations of data are 

either merely acceptable or absolutely necessary for a wide range of problems. I will return to 

each of the two above-mentioned broader issues shortly, but I will first outline the more 

specific question of interest in the following section. 

Conflict monitoring 

 One popular cognitive control theory of attention is the conflict monitoring (or 

conflict adaptation) account (Botvinick, Braver, Barch, Carter, & Cohen, 2001). According 

to this account, each experience of conflict between competing response tendencies leads to 

an upregulation of control, with a downregulation in the absence of conflict. For instance, in a 

Stroop task (Stroop, 1935), participants respond to the print colour of colour words, which 

produces conflict on incongruent trials – where the word and colour mismatch (e.g., “red” in 

green) – but not on congruent trials – where the word and colour match (e.g., “red” in red).1 

According to the conflict monitoring account, then, control is increased after incongruent 

trials and decreased after congruent trials. One particular strain of evidence for conflict 

monitoring is the proportion congruent (PC) effect (Logan & Zbrodoff, 1979; Logan, 

Zbrodoff, & Williamson, 1984), which is the finding that congruency effects are reduced 

when trials are mostly incongruent (e.g., 80% incongruent) relative to mostly congruent (e.g., 

80% congruent), as illustrated in Figure 1. Although initially interpreted differently, the 

conflict monitoring account proposes that this effect occurs because control of attention away 

from the distracting word (and/or toward the colour) is increased when conflict is more 

 
1Note that this simplifies a little bit, as conflict might vary along a continuum (Yeung, Cohen, & Botvinick, 

2011), though this description captures the rough idea. 
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frequent, thereby reducing the congruency effect (Cohen, Dunbar, & McClelland, 1990; 

Lowe & Mitterer, 1982). 

(Figure 1) 

 Much debate has centered around whether PC effects like this are due to conflict 

monitoring or to other biases (for reviews, see Abrahamse, Braem, Notebaert, & Verguts, 

2016; Bugg & Crump, 2012; Schmidt, 2013a, 2019). For instance, simple stimulus-response 

contingency learning biases (Hazeltine & Mordkoff, 2014; Schmidt, 2013c; Schmidt & 

Besner, 2008) and binding biases (Risko, Blais, Stolz, & Besner, 2008) confound the PC 

effect. Relevant to the present article, however, one issue in the literature is whether there is a 

PC effect independent of any item-specific biases (Cheesman & Merikle, 1986; Glaser & 

Glaser, 1982; Kane & Engle, 2003; Lindsay & Jacoby, 1994; Shor, 1975; West & Baylis, 

1998). This I will refer to as the list-level PC (LLPC) effect. Typically, LLPC is assessed by 

manipulating the PC of the list (e.g., averaged across all items for one group of participants or 

block of trials) with some biased (or inducer) items. For instance, “blue” and “red” might be 

mostly congruent (e.g., “blue” most often in blue) in one condition and mostly incongruent 

(e.g., “blue” most often in red) in another condition. Intermixed with these biased items are 

some other transfer (or diagnostic) items that are not directly manipulated. For instance, 

“green” and “brown” might be presented equally often in green and brown for all participants 

(i.e., the same congruent:incongruent ratio in both PC conditions). It is the PC effect for these 

transfer items that we term the LLPC effect. 

 Notably, a LLPC effect cannot be explained by contingency learning or binding, but 

could, in principle, be explained by transfer of control from the manipulated items to the 

transfer items. Some of the first, most straightforward manipulations of LLPC produced no 

effect (Blais & Bunge, 2010; Bugg, Jacoby, & Toth, 2008). However, later reports have 

observed effects in a variety of tasks (e.g., Stroop, Simon, picture-word, prime-probe; Bugg, 
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2014; Bugg & Chanani, 2011; Bugg, McDaniel, Scullin, & Braver, 2011; Gonthier, Braver, 

& Bugg, 2016; Hutchison, 2011; Schmidt, 2017; Spinelli & Lupker, in press), including 

across tasks (Funes, Lupiáñez, & Humphreys, 2010; Torres-Quesada, Funes, & Lupiáñez, 

2013; Wühr, Duthoo, & Notebaert, 2015). There still remain alternative interpretations of 

these LLPC effects, however. For the present report, I will focus on one alternative 

mechanistic account of the LLPC effect: temporal learning. 

Temporal learning 

 Schmidt (2013b) first presented the notion that the LLPC effect might be due, wholly 

or in part, to temporal learning biases (for a related idea in masked priming, see Kinoshita, 

Mozer, & Forster, 2011). The idea is not necessarily easy to grasp if one is used to thinking 

about the content of the items we manipulate (e.g., congruent vs. incongruent, high vs. low 

frequency, etc.). However, many times more systematic variance in response times is 

explained by how we time our responses than the factors themselves (see Grosjean et al., 

2001). For instance, we are highly biased to time our responses in a rhythmic way: my 

response time (RT) on the current trial will likely be similar to my RTs on very recent trials, 

and increasingly less similar to a given prior RT the further back in time it occurred. This 

systematic variability in response times is called pink noise, 1/f noise, or flicker noise. These 

autocorrelations in RTs are omnipresent in a broad range of cognitive paradigms, including 

mental rotation, lexical decision, visual search, and speeded classification (Gilden, 1997, 

2001; Gilden, Thornton, & Mallon, 1995). In Figure 2a, the data of one randomly-selected 

participant from Bugg (2014) are presented (Participant 312),2 which demonstrates the typical 

pink noise pattern. To better visualize the pink noise, Figure 2b presents simulated data 

showing how current RT correlates with RTs of previous lags in autocorrelated data. In 

particular, current RT becomes less and less correlated with prior RTs the larger the lag 

 
2This participant actually shows a below average autocorrelation relative to the sample as a whole. 
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between the two RTs.3 

(Figure 2) 

 At first glance, this sort of rhythmic timing bias may seem to be orthogonal to the 

experimental manipulation of content (e.g., the proportion of congruent trials), but it is not. It 

has been repeatedly observed in a number of domains that timing biases produce interactive 

effects between study factors that have relatively little to do with the factor manipulations 

themselves (Kinoshita, Forster, & Mozer, 2008; Kinoshita & Lupker, 2003; Kinoshita et al., 

2011; Lupker, Brown, & Colombo, 1997; Mozer, Kinoshita, & Davis, 2004; Schmidt, 2014, 

2016b). Indeed, Kiger and Glass (1981; see also, Kinoshita et al., 2011) stress that such 

decision-related (rather than content-related) effects “will continue to be rediscovered in 

many circumstances ... and will be mistakenly attributed to a multiplicity of causes” (p. 697). 

 Rhythmic timing biases can produce a LLPC effect because such biases can affect 

congruent and incongruent trial types differentially in conditions with a faster versus slower 

task pace. Naturally, the task pace in a mostly congruent list will be much faster than in a 

mostly incongruent list (i.e., more fast congruent trials in the former). This is illustrated in the 

top panels of Figure 3 with imagined data: because there are so many congruent trials in the 

mostly congruent list, incongruent trial RTs largely fall in the right tail of the overall 

distribution as outliers, whereas the reverse is the case in the mostly incongruent list. Schmidt 

(2013b) argued that timing biases will benefit response speed selectively for trials in which 

participants have sufficient evidence to select a response at the expected time. A simplified 

illustration is presented in the bottom panels of Figure 3. In particular, the threshold for 

selecting a response is decreased (i.e., the trigger to respond is loosened) at the expected time, 

allowing for faster responses if the task pace can be maintained (i.e., if there is sufficient 

evidence to cross the temporarily-decreased threshold). When the task pace is fast (e.g., 

 
3 Readers interested in how this data were simulated can contact the author for more information. 



DATA TRANSFORMATION  8 

mostly congruent), congruent trials will tend to benefit from temporal expectancies. That is, 

participants will have enough evidence to select a response at the expected time and maintain 

their task pace. For the occasional incongruent trial, however, there will typically not be 

enough evidence for a response at the expected time (e.g., due to ongoing resolution of 

conflict), and responding will therefore be delayed. The net effect is an inflated congruency 

effect. In the mostly incongruent condition, the situation is largely reversed. The task pace is 

slower and an early response is therefore not expected. Expectancy for a later response might 

therefore benefit incongruent trials. The occasional congruent trials, however, do not benefit 

in the same way as in the mostly congruent condition. The net effect is a smaller congruency 

effect. 

(Figure 3) 

 At a very rough level, the notion is that the faster the “pace” of responding, the more 

likely it is that a given congruent trial will benefit from temporal expectancies (i.e., the 

temporarily reduced response threshold) and the less likely that a given incongruent trial will 

benefit. We could therefore consider previous trial RT as a rough proxy for pace, with the 

prediction that the congruency effect should be overall larger the faster the previous RT. As 

one of several lines of evidence for temporal learning biases in the LLPC effect, Schmidt 

(2013b) tested this notion. In particular, congruency, PC, previous trial RT, the interaction 

between congruency and PC, and the interaction between congruency and previous RT were 

used as predictors of current trial RT (along with subject and item random effects) in a linear 

mixed effects (LME) regression on LLPC data from Hutchison (2011). The predictions of the 

temporal learning account were met. First, the standard autocorrelations in response times 

were observed (i.e., a sizeable interaction between previous and current RT). Second and 

more importantly, previous RT and congruency interacted. That is, the faster the previous 

trial RT, the larger the congruency effect on the current trial. Third, this previous RT by 
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congruency interaction explained variance in the LLPC effect, with the latter effect 

diminishing after accounting for previous RT biases. The LLPC effect (i.e., interaction 

between PC and congruency) was still significant, but (as explained later) this was expected. 

As will be expanded on in further detail in sections to follow, these analyses were a far from 

perfect test of the temporal learning account, but did provide positive evidence of temporal 

learning (e.g., the conflict adaptation account should not have predicted the observed results). 

Challenge to the temporal learning account 

 In a recent report, Cohen-Shikora and colleagues (2019) presented a strong challenge 

to the temporal learning account of the LLPC effect. As a one key point of their critique, they 

question a particular detail of the LME analyses in Schmidt (2013b): previous- and current-

trial RTs were inverse transformed (−1000/RT).4 This transform was used for three reasons. 

First, this transform (along with all other data treatments) were based directly off of past 

reports (esp., Kinoshita et al., 2011). Second, an inverse transform normalizes the response 

time distribution (also Gamma and log transforms are relatively effective and similar, but 

inverse is typically the most optimal). The typical response time distribution is not normal, 

but rather ex-Gaussian in shape, with a heavy positive skew. This violates the distributional 

assumptions of LME, so it would be inappropriate to interpret the LME results without a 

correction. As illustrated in Figure 4, an inverse transform normalizes the distribution by 

reducing the right tail and increasing the left tail, thereby resolving the problem. The third 

reason for using an inverse transform relates to the reason why raw RT is ex-Gaussian 

distributed in the first place and will be returned to later. 

(Figure 4) 

 Cohen-Shikora and colleagues (2019) reproduced the LME analyses of Schmidt 

(2013b) and further replicated the analyses on two more datasets from Bugg (2014) and 

 
4Note that the negative sign is merely to preserve the original direction of the distribution and the 1000 in the 

numerator is simply to remove some of the decimal places from the inverted RTs. Changes to the numerator are 

not relevant for actual model fit (e.g., 1/RT is mathematically equivalent). 
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Gonthier and colleagues (2016). The Hutchison (2011) dataset was a colour-word Stroop task 

with 226 participants,5 each of which performed 180 trials in either a mostly congruent or 

mostly incongruent condition. The Bugg dataset was also a colour-word Stroop task with 72 

participants from their Experiments 1a and 2a, and each participant completed 320 trials in 

either the mostly congruent or mostly incongruent condition. The Gonthier dataset was a 

picture-word Stroop task with 936 participants from their Experiments 1a and 1b, and each 

participant performed 384 trials in both the mostly congruent and mostly incongruent 

conditions. In all three datasets, all of the original predictions of the temporal learning 

account were met in the LME as originally performed by Schmidt (2013b). Specifically, in all 

three datasets (a) previous trial RT was significantly correlated with current trial RT, (b) 

previous trial RT was significantly negatively correlated with current trial congruency, and 

(c) the LLPC effect beta was reduced after accounting for (a) and (b). 

 However, the authors argued that the use of an inverse transform on current RT (and, 

of less importance, previous RT) was problematic. Although inverse (or similar) transforms 

are increasingly being adopted in LME analyses as standard practice (e.g., Andrews & Lo, 

2012; Kinoshita et al., 2011; Kliegl, Masson, & Richter, 2009; Masson & Kliegl, 2013), there 

are scenarios in which this might be undesirable (Balota et al., 2013; Lo & Andrews, 2015), 

as I will expand on in the section to follow. Cohen-Shikora and colleagues therefore re-

conducted the analyses on raw RTs (for both previous and current RT) with a generalized 

linear mixed model (GLMM), which can correct for the skewed distribution by modelling the 

skew (subsequently also applied by Spinelli, Perry, & Lupker, 2019, which will be discussed 

later in the manuscript). This was done with a Gamma distribution (similar to an inverse) and 

 
5This was misreported in Schmidt (2013b) as 230, likely due to counting unique participant numbers on a 

participant list provided by Hutchison, which contained a different number of participants than the actual dataset 

for unknown reasons. 
6A dataset posted on the Open Science Framework (https://osf.io/b9zyv/) seemingly has 95 participants, but I 

used the same data as Cohen-Shikora and colleagues (2019). It is uncertain where the two extra participants (in 

Experiment 1b) come from. 

https://osf.io/b9zyv/
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an identity link function (which specifies that factors should have a linear relationship with 

the dependent variable, as in an ANOVA or simple linear regression). Unlike the LME results 

with the inverse transform, the results with GLMM on raw RTs can best be described as 

inconsistent, with no clear evidence for a temporal learning bias in the LLPC effect across 

datasets (e.g., the beta for the LLPC effect actually increased in 2 of 3 datasets). 

 The authors also fairly pointed out that the influence of timing biases on the LLPC 

interaction was merely eyeballed in Schmidt (2013b). That is, the beta for the interaction was 

reduced with temporal learning controls (as predicted), but this decrease was not tested 

statistically. Because of this, Cohen-Shikora and colleagues (2019) performed a series of 

additional analyses, which (for the most part) provided better support for the temporal 

learning account in the LME than in the GLMM. For instance, Akaike information criterion 

(AIC) and Bayesian information criterion (BIC) improved with previous trial RT in the LME 

for all three datasets but reversed in two of three datasets in the GLMM. 

 Although both approaches have limitations, they also observed in the LME that 

variance explained by the LLPC interaction increased in one dataset (Hutchison, 2011) and 

the change in R2 by adding the LLPC interaction was not reduced with temporal learning 

metrics in this same dataset (for the other two datasets, these metrics were consistent with the 

temporal learning account). The authors themselves pointed out a limit with the former 

approach (see their Footnote 12): variance explained for the LLPC interaction increased in 

this one dataset when including timing controls, even though the beta got smaller. This may 

seem contradictory, but only if the analysis of Cohen-Shikora and colleagues is 

misunderstood as a test of change in the size of the LLPC with the introduction of a temporal 

learning control. Instead, their contrast tests whether there is a change in variance explained, 

which is influenced not only be the size of the effect, but also its precision. And, indeed, the 

LLPC estimates did become more precise (i.e., reduced standard errors) when modelling 



DATA TRANSFORMATION  12 

away the substantial noise variance introduced by pink noise. A similar concern also applies 

to the R2-change analyses, where the authors tested whether the increase in variance 

explained by introducing the LLPC interaction was smaller in a model with previous RT 

controls than in a model without previous RT controls: again, this models variance explained, 

rather than the effect magnitude. 

 Indeed, none of the supplementary tests that these authors provided directly tested the 

significance of the change in beta weights for the LLPC interaction by introducing temporal 

learning metrics, which is the actual question of interest. For this, we can use a test for beta 

changes with nested data (Clogg, Petkova, & Haritou, 1995), which is designed to directly 

measure the significance of a change in betas with the introduction of one or more additional 

control factors to the regression. Consistent with the temporal learning account, the beta did 

significantly reduce in all three LME datasets when previous RT and the interaction with 

congruency were added to the regression: Hutchison (2011), t(223) = 4.116, SE = 0.002, p < 

.001, Bugg (2014), t(69) = 5.057, SE = 0.003, p < .001, and Gonthier and colleagues (2016), 

t(86) = 3.729, SE = 0.002, p < .001. 

 The authors also performed analyses on the three-way interaction between previous 

RT, congruency, and PC, with the notion that the temporal learning account should predict 

such an interaction (not observed in 2 of the 3 datasets). However, they appropriately 

acknowledge that no claims have been made about the presence or absence of this interaction 

in past argumentation for the temporal learning account. Indeed, the present author is unsure 

why the temporal learning account should make any strong predictions about this three-way 

interaction and said interaction does not speak directly to the LLPC effect, anyway. 

 Also interesting, the authors aimed to improve the proxy for pace by averaging three 

previous response times (first in an unweighted average and then in an exponentially-

weighted average). Although the authors suggested that improving the temporal learning 
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proxy in this way should have eliminated the LLPC effect if the temporal learning account is 

correct, this is not justified. The influence of timing on the LLPC effect would have to be 

modelled perfectly for this to be true, but as will be explained in the Previous RT and Pace 

section, this is much more difficult to achieve than the simple addition of a few more prior 

RTs. What certainly could be predicted from the temporal learning account, however, is that 

adding extra prior RTs to the regression should explain a bit more variance. Consistent with 

this, there was a further decrease in the beta for the LLPC effect in the LME in all three 

dataset. Again, results with GLMM were less favourable to the temporal learning account, 

with an increase in the LLPC beta in two of the three datasets. Globally, then, the temporal 

learning account faired much worse in the GLMM analyses than in the LME. Indeed, with 

LME, the temporal learning predictions were met in all three datasets with the original 

analyses in addition to the newly-introduced AIC/BIC measures and the improved timing 

measures introduced by Cohen-Shikora and colleagues (2019), but this was definitely not the 

case with the GLMM analyses. As I also demonstrated above, the betas for the LLPC effect 

also significantly decrease with the introduction of a temporal learning control, which is the 

most direct test of the temporal learning account. The present report will focus primarily on 

the differences between LME and GLMM in the simple analyses as performed initially by 

Schmidt (2013b), but will return to some of these additional analyses later. I will also 

introduce some new ways of statistically assessing the impact of temporal learning biases on 

the LLPC effect, including on raw response times. 

 Based on the above analyses, the conclusion of Cohen-Shikora and colleagues (2019) 

was that there is no clearly established evidence for temporal learning confounds in LLPC 

effects and that such confounds can be safely ignored. This seems surprising to the present 

author, as the LME data clearly seem to provide consistent support for the temporal learning 

account. The strong claims of Cohen-Shikora and colleagues, therefore, seem to be based on 
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a favouring of the GLMM data (which were much less favourable for the temporal learning 

account) and a dismissal of the LME data (but with no explanation for the consistent patterns 

across datasets). The authors further pointed out that the LLPC effect (i.e., congruency by PC 

interaction) remains robust regardless of how the data are analysed, with the implication that 

this is inconsistent with a pure temporal learning account of the LLPC effect and that a 

conflict monitoring contribution is difficult to contest. 

Response to the challenge 

 Cohen-Shikora and colleagues (2019) thus present a challenge to the temporal 

learning account and in the rest of this paper I will address this challenge. In particular, I will 

attempt to convince the reader of five things. First, the fact that a LLPC effect remains after 

modelling pace with previous RT (or even a weighting of several past RTs) does not argue 

against a pure temporal learning account. This is because the temporal learning account 

predicts a priori that previous trial RT is only a weak proxy of “pace” and will therefore only 

capture a small part of the true rhythmic timing bias. In fact, if previous RT completely 

explained away the LLPC effect, this would actually be inconsistent with the temporal 

learning account explained above. Second, inverse transforms are not inherently problematic 

and may even be regarded as a more sensible metric than raw RT analyses, particularly for 

the present case. Third, the reason that GLMM with raw RTs produced notably “worse” 

results than LME with transformed RTs was due to distortion of the autocorrelation in 

response times in a raw RT scale relative to the inverse scale. The difference is not, in 

contrast, due to a distortion of a true effect of LLPC. Fourth, even in raw RTs one can still 

observe clear evidence for temporal learning confounds in the LLPC effect if previous RT is 

allowed to predict variance in the correct way. Fifth, there are compelling lines of empirical 

evidence that provide convergent support for temporal learning in the LLPC effect. Each of 

these points will be addressed in a separate section below. Most importantly, this report will 
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provide an explanation for why one approach (LME) provides relatively consistent support 

for temporal learning across multiple datasets, whereas another approach (GLMM) finds only 

noise. That is, if the GLMM results – which provide no clear evidence of temporal learning – 

are to be trusted as the true story (i.e., that there is no temporal learning bias), then there 

should be some account of why the LME results provide clearer support for temporal 

learning. That is, how are the inverse-scaled response times repeatedly providing evidence for 

temporal learning if there is no temporal learning bias to start out with? 

Previous RT and Pace 

 Let me first start by agreeing with one aspect of the conclusions of Cohen-Shikora 

and colleagues (2019): attempting to “model away” temporal learning biases with an LME 

(or GLMM) using previous RT as a proxy for temporal learning is unlikely to work very 

well. In fact, this was my conclusion from the outset (Schmidt, 2013b). Indeed, it was 

predicted on an a priori basis that including previous RT in the LME would reduce but not 

eliminate the LLPC effect. The temporal learning account predicts this because previous RT 

is only a weak proxy for pace, meaning that (a) much of the temporal learning bias will not 

be captured by previous RT, and (b) the LLPC interaction will continue to “steal” this 

unmodelled timing bias. These two conclusions follow from theory, and were also 

demonstrated with a computationally modelled implementation of the theory. In particular, a 

large simulated dataset was created with the Parallel Episodic Processing (PEP) model. The 

PEP model implements the temporal learning mechanism discussed above and produces the 

LLPC effect as a direct result of this temporal learning mechanism exclusively (e.g., with 

appropriate lesion studies to localize the effect to this specific mechanism). When these 

simulated LLPC data were analysed in the same way as the participant data, the LME 

revealed the same previous RT effects as in the participant sample, and a large remaining 

LLPC effect. 
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 This finding in the simulated data itself was expected: the temporal learning account 

simply does not predict that inclusion of previous RT in the LME should eliminate the LLPC 

effect. This is because the LME effectively tests the hypothesis that the magnitude of the 

congruency effect linearly increases with a linear decrease in previous RT (or inverse RT, as 

the case may be). For instance, following an unusually fast RT, the congruency effect should 

be unrealistically gigantic (i.e., as the congruency effect should continue to grow the faster 

and faster the prior RT), whereas following an unusually slow RT the congruency effect 

should be trivially small or even negative (i.e., as the congruency effect should continue to 

shrink the slower the prior RT, eventually crossing zero and reversing sign). This is simply 

not what the temporal learning account predicts (especially a negative congruency effect). In 

fact, the specific notion implemented in the PEP model (and represented visually in Figure 3) 

predicts that most of the “movement” should be around the peak pace of the RT distribution 

(which can be observed in changes in skewness and kurtosis; see Schmidt, 2016b, for detailed 

analyses), with much less movement in the tails. Thus, a priori, there is not a one-to-one 

relationship between previous RT and current-trial congruency effects. The test for a linear 

slope therefore only partially captures the temporal learning bias and the LLPC interaction 

term should continue to “steal” some of this missed variance. In fact, if the LLPC effect were 

eliminated by controlling for previous RT then it would indicate that the temporal expectancy 

account explained above is wrong (e.g., being inconsistent with the PEP model data and the 

logical implications of the verbal model, as explained above). As such, the persistence of a 

LLPC effect in such analyses should not be taken as strong evidence against a pure temporal 

learning view nor as strong evidence for a conflict monitoring contribution to the effect. 

Instead, it is ambiguous, favouring neither the temporal learning nor the conflict monitoring 

account. This ambiguity, of course, is problematic, but the results from the statistical 

modelling analyses do provide some evidence in favour of a temporal learning contribution to 
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the LLPC effect (see also the Other Lines of Evidence for Temporal Learning section). 

The Scale of Time 

 The previous section explored why previous RT only roughly measures what it serves 

as a proxy for. In the section to follow, I will demonstrate that analyses on raw (rather than 

inverse) RT distort this proxy even further. First, the present section will explore what an 

inverse transform actually does and when such transforms are and are not problematic. 

Cohen-Shikora and colleagues (2019) rightly point out that inverse transforming RTs changes 

the nature of the question being assessed: 

“Furthermore, these transformations change the nature of the variable being explored; 

what was an analysis of raw RT (response time, what researchers are typically 

formulating predictions about, as in the case of Schmidt’s (2013b) predictions) 

becomes an analysis of response rate (a different DV) once transformed to inverse 

RT. As Lo and Andrews (2015) and Robidoux (2017) pointed out, researchers should 

take this into account when justifying a transformation that is appropriate for their 

predictions.” 

Indeed, there are clear cases in which transforming data makes the test of a specific 

hypothesis inappropriate. That is, the transform can distort the original scale of a variable in a 

potentially undesirable way (S. S. Stevens, 1946). In these cases, we should indeed prefer 

analyses on non-transformed data. In other cases, the reverse is true: raw RTs do not test the 

theory appropriately and transformed data do. 

 First, let us consider an instance of the former case: tests for additive main effects. Lo 

and Andrews (2015; see also, Balota et al., 2013) were specifically concerned with word 

reading models, some of which explicitly propose additive relations between factors. In other 

words, said models adhere to additive factors logic (Sternberg, 1969), proposing, for instance, 

that word frequency and stimulus quality should each have an independent influence on 

naming times, with no interactions between the two factors (e.g., the effect of stimulus 

quality should be equivalent for high and low frequency words). The idea is that the 

processes that produce one effect (e.g., stimulus quality) are separate from the processes that 
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produce another effect (e.g., word frequency), so the two should not interact. Prima facie, it 

may seem like a null interaction is necessary with independent mechanisms, though this is 

not necessarily the case (e.g., in a cascading system; see Ridderinkhof, Vandermolen, & 

Bashore, 1995; Smid, Lamain, Hogeboom, Mulder, & Mulder, 1991). Some word reading 

models do assume strong additivity whereas others (e.g., Borowsky & Besner, 2006) do not. 

When testing these sorts of additive-factor models, we do want to ensure that response times 

are not distorted by a transform. For example, with an inverse transform, longer response 

times from the extended right tail of an ex-Gaussian distribution are “squished” toward the 

center of the distribution and faster response times from the left tail are “stretched out” (see 

Figure 4). When you have two factors with a large main effect, the result of such a transform 

will be a relative decrease in the differences between the slower cells of the design relative to 

the faster cells. This can change the effective form of the interaction, as illustrated in a 

simplified example with one observation per cell in Figure 5 (see also, Balota et al., 2013). 

(Figure 5) 

 First, it is noteworthy that the above-discussed issue with transformed data is 

applicable to assessing non-crossover interactions in which there is a main effect for both 

factors. The same concern is not applicable to crossover-type interactions (Loftus, 1978), 

which the LLPC effect is.7 That is, a test for the additivity of two main effects can change 

direction (positive, negative, or additive) with a transform. However, this is not true of a 

crossover interaction, which will remain a crossover interaction (in the same direction) after a 

transform. It is similarly not true of a simple main effect (Kliegl et al., 2009), which will also 

maintain its direction after a transform. In this sense, the issue with inverse transforms 

discussed in Lo and Andrews (2015) and Balota and colleagues (2013) is not applicable to 

the LLPC effect and does not argue for a switch from inverse to raw RT (though I will return 

 
7As normally plotted with PC as the x-axis categories, the bars/lines for congruent and incongruent trials do not 

touch each other, but the interaction is still crossover because the lines do cross when switching congruency and 

PC in the plots (see Loftus, 1978, for further explanation). 
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to a different scenario in LLPC data later that might raise a related concern). 

 More generally, analyses on transformed data are not inherently problematic. In fact, 

there are scenarios in which raw RT is clearly the wrong scale. Lo and Andrews (2015) give a 

clear example of this. Certain theories of cognitive aging propose a general slowing with age, 

whereby a given effect (e.g., a Stroop effect) will be larger in an aging population simply 

because response time effects scale up with slower responses (e.g., Salthouse, 1985). In this 

case, we are interested in knowing whether the magnitude of an effect proportional to mean 

RT is any different in young and elderly populations. A log or similar transform (e.g., effect-

proportional-to-mean or z transformations)8 is thus the only way to assess the viability of this 

general cognitive slowing theory (i.e., that the effect proportional to mean RT is no larger or 

smaller in an elderly population), and analyses on raw RT are inappropriate. 

 Also outside of the speeded response time domain, there are a number of domains in 

which an inverse scale is theory appropriate. For instance, Weber’s law states that the just-

noticeable difference between two things – in many sensory modalities, such as luminance, 

length, mass, or sound perception – is proportional to the reference level (though not always 

perfectly; see Holway & Pratt, 1936). For instance, if a temporal duration (e.g., of a tone) x is 

just noticeably different from a temporal duration i∙x, then durations y and i∙y will be 

similarly distinguishable. That is, any multiplicative difference of i will be just noticeable. 

Similarly in memory for temporal order, a larger difference in time is required to distinguish 

two events at a comparable rate the farther ago the events occurred – termed temporal 

distinctiveness – ranging all the way from the scale of milliseconds for very recent events to 

the scale of years for very distant events (Brown, Neath, & Chater, 2007). There are many 

other examples of inversed scaling, such as the scalar property of time estimation (e.g., 

French, Addyman, & Mareschal, 2011), where accuracy in time estimation scales with the 

 
8 Which transform to use, of course, depends on the specific assumptions of how general slowing impacts 

observed effects. The choice of transforms may, therefore, be ambiguous, unless the model of cognitive slowing 

directly implies a specific transform. 
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reference duration. 

 By convention, most cognitive theories are developed and tested on raw RT. This 

does not imply, however, that raw RT is the most sensible metric for a given theory. Though 

views differ (cf., Balota et al., 2013; Lo & Andrews, 2015), there is even an argument as to 

why inverse RT is actually a better metric for most questions we might ask. This is related to 

the very reason why RT data are likely ex-Gaussian distributed in the first place. Consider a 

simplified9 example of the drift-diffusion model (Ratcliff, 1978), presented in Figure 6. Note 

how arithmetic increases in the slope (i.e., speed of processing information) do not translate 

into arithmetic increases in RT (or variance). Put a different way, a Gaussian distribution of 

slopes (or “drift rates” in diffusion model terms) will produce an ex-Gaussian distribution of 

response times. This is why the diffusion model fits raw RT distributions (Wagenmakers & 

Brown, 2007). Though Balota and colleagues rightly point out that an inverse transform 

would be inappropriate for standard diffusion model analyses, an inverse transform is akin to 

transforming RTs back into their underlying parameter value (viz., slope). 

(Figure 6) 

 More globally, response time effects and variances tend to “scale up” the slower one 

responds (Schmidt, 2016a; Schmidt & De Houwer, 2016; A. Stevens et al., 2002; Urry, 

Burns, & Baetu, 2015), also linearly in relation to one another (Wagenmakers & Brown, 

2007). Thus, if we want to know whether there are differences in the underlying learning or 

(as the case may be) attentional control in a given response time effect, then inverse 

transformed RT (which corrects for the above-mentioned mean and variance scaling) is 

probably a better measure of the underlying processes of interest than raw RT. Indeed, the 

conflict monitoring account is exactly about processing rate: evidence accumulation for the 

target and distracting dimensions proceeds at different rates (slopes) depending on attentional 

 
9For instance, I only consider drift rate to a fixed boundary, and do not discuss nondecision time, starting points, 

etc. 
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control settings. The typical analyses may be on raw RT, but this does not necessarily mean 

that raw RT analyses best reflect the underlying theory (argumentum ad antiquitatem). Of 

course, this drift-diffusion example illustrates why, from many theoretical perspectives, 

transforming data may make more sense than one initially imagines, but this will not be the 

case in all instances. For instance, accounts that assume additive effects of two or more 

discrete processes (discussed earlier) are fundamentally incompatible with this sort of 

thinking in terms of a single drift process (except, perhaps, if there are two separated drifts). 

 How frequently we might prefer analyses on inverse or raw RT (or yet another scale) 

is open for debate. Indeed, there has been a long discussion of the up- and downsides of 

restricting analyses to simple means (Sternberg, 1969) versus considering the distribution of 

effects (Heathcote, Popiel, & Mewhort, 1991) and/or performing transformations of non-

normal data (Kliegl et al., 2009). At minimum, however, this section aimed to show that 

(inverse) transformed response times are not merely a distortion of what we should (always) 

be interested in. It is true that in some cases inverse transforms clearly are undesirable (e.g., 

when aiming to assess additivity of two main effects). However, in many cases 

transformation is appropriate or even necessary. Most critically, concerns about distortion of 

an interaction are not applicable to the crossover-type interaction observed in the LLPC. The 

reader may therefore wonder why LME on inverse RT and GLMM on raw RT produced 

seemingly contradictory results in Cohen-Shikora and colleagues (2019). The next section 

will explain this discrepancy and why analyses on inverse RTs are more appropriate for 

assessing the temporal learning account. 

Inverse RT Better than Raw RT for Assessing Autocorrelations 

 While transforming response times can influence the nature of an interaction, 

particularly between two factors with a large main effect for each, this is not the reason why 

LME and GLMM seemingly gave different answers to the same question in Cohen-Shikora 
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and colleagues (2019). More precisely, the decision whether to transform does not 

meaningfully influence the PC by congruency interaction. Instead, analyses on raw (rather 

than inverse) current and previous RT distort the autocorrelation between previous and 

current RT. These two assertions will be clearly demonstrated in this and the following 

section. 

 The distortion of the response time autocorrelation can most easily be visualized with 

scatterplots of the relation between raw previous and current RT and between inverse 

previous and current RT, presented in Figure 7 for each of the three datasets used by Cohen-

Shikora and colleagues. Note that in the transformed data the scatterplots are relatively 

normal, with most observations in the center oval with a positive slope indicating the 

standard autocorrelation. The exact same correlations in the raw RTs, however, are very 

atypical. Most of the observations are “squished” into the bottom left corner of the scatter 

plots and the relatively slower (previous and current) response times are spread out distantly 

from this in a fan. This is a predictable consequence of correlating two ex-Gaussian 

distributed variables with exactly the sort of autocorrelation predicted by the temporal 

learning account. What this pattern means is that most of the trials simply anchor the 

regression line (bottom left) and the slope is almost exclusively determined by massively 

outlying response times in the right tails of the previous and current RT distributions. That is, 

by asking the regression to plot a straight line through this “fan” pattern, very little weight is 

given to the bulk of the observations and a very large weight is given to severely-outlying 

slow RT observations. We are essentially asking the regression to fit the outliers and not the 

rest of the data. This is related to the familiar textbook example of the heavy oversensitivity 

of Pearson’s r to outliers. 

(Figure 7) 

 The raw RT scatter plots are not only atypical but are also diagnostic for why the 
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LME results on the normalized RTs produce different results than the GLMM on raw RT. Put 

simply, the raw scale is not the right metric for the hypothesis. The temporal learning account 

does not predict effects to be localized primarily in the extreme right tail of the distribution, 

but this is exactly what is tested with the identity link function on raw RT in the GLMM.10 

Indeed, as mentioned earlier, the temporal learning account actually predicts most of the 

movement to be around the peak of the response time distribution, not in the right tail. This 

can also be observed in the amount of autocorrelation between previous and current RT. This 

was done by first removing subject and item noise using LME to get residual RT and 

previous RT estimates for each participant in both raw and inverse data. The resulting 

correlation between previous RT and current RT was significantly larger in the inverse scale 

by 27% in Hutchison (2011), z = 5.978, p < 0.001, 14%11 in Bugg (2014), z = 2.262, p = 

0.024, and 19% in Gonthier and colleagues (2016), z = 5.016, p < .001 (the z modification 

from Silver, Hittner, & May, 2004, is reported, but all six tests from the cocor package 

converge on the same inference for all reported tests). There are two important things to note 

about these changes. First, the autocorrelation is significantly reduced, but certainly not 

eliminated in the raw scale. Second, note that the autocorrelation between previous and 

current RT, while a strong prediction of the temporal learning account, is not how the 

temporal learning account explains the LLPC effect. Instead, the temporal learning account 

explains the LLPC effect via the previous RT by congruency interaction. Importantly, a much 

larger increase in the correlation for the interaction between previous RT and congruency is 

observed in the inverse scale of 149% in Hutchison (2011), z = 8.722, p < .001, 109% in 

Bugg (2014), z = 5.229, p < .001, and 351% in Gonthier and colleagues (2016), z = 7.038, p 

< .001. That is, the correlations in the inverse RT scale (.084, .079, and .050, respectively) are 

 
10Note that the Gamma family corrects the statistical assumptions of the regression, but the identity link function 

does explicitly specify that previous and current RT should be related to each other linearly, as depicted in the 

scatterplots. 
11 The difference in correlations is even larger for this dataset (27%) if the Q-Q plots are better normalized with 

a 375 ms trim, but I have stuck with a 300 ms trim for consistency with Cohen-Shikora and colleagues (2019). 
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substantially larger than those in the raw RT scale (.034, .038, and .011, respectively). Thus, 

while the simple autocorrelation is decreased moderately, what is lost in the autocorrelation is 

exactly the variance that the temporal learning account predicts is important for explaining 

the LLPC effect. 

 Indeed, what changes between the LME and GLMM analyses is not the presence of a 

LLPC effect (this remains stable with or without a transform). The direction of this crossover 

interaction (along with the main effects of congruency and PC) is simply not impacted by an 

inverse transform. What changes, instead, is how well previous RT predicts current RT and, 

more critically, congruency (and indirectly: LLPC). That is, a continuous predictor (like 

previous RT) will be influenced strongly by the scaling of the variable. When response times 

are adjusted to their theory-anticipated inverse scale (see The Scale of Time section), the 

continuous previous RT variable does a good job of explaining variance in both current RT 

and congruency. We should naturally expect that this effective predictive power should be 

undermined when distorting this continuous predictor to a heavily skewed scale (along with 

the continuous dependent variable). 

 It is further important to note that a correlation that does not exist will not emerge out 

of a transform. That is, if previous RTs are not actually related to the LLPC effect, then a 

transform will not make it appear as if they are. Any changes in slopes will simply be random 

(i.e., not systematic). In contrast, a correlation that does truly exists can be distorted, even 

eliminated entirely, by a transform. Analogically, this is similar to trying to fit a straight 

regression line to an inverted-U shaped curvilinear relationship, or vice versa. As a logical 

consequence, correlations will necessarily be weaker in a scale that more poorly reflects the 

true relationship between two variables.12 As with standard model fitting techniques, then, the 

results reported here demonstrate that the inverse scale better fits the true relationship of 

 
12 See an Excel document in the OSF link with an example demonstration of this. 
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previous RT to current RT and congruency. Thus, the inverse scale should be preferred. Of 

course, while a better fitting model provides evidence against a worse fitting model, the better 

fitting model can still be wrong. The next section will consider (but eventually reject) a 

potential caveat with the conclusions thus far. 

Corrected Raw RT Analysis 

 It is never explicitly stated by Cohen-Shikora and colleagues (2019) why the GLMM 

results provided notably different results than LME. The authors do reference Lo and 

Andrews (2015) as a reason to be skeptical of analyses on inverse-transformed data. The 

concerns raised in that paper, however, is that the direction of an interaction might be 

reversed (or otherwise qualitatively changed) by “stretching” of the response time 

distribution with a transform. Although this should not apply to the LLPC effect (as 

explained in The Scale of Time section) one might nevertheless propose that the variance that 

inverse previous RT explains in the LLPC effect in inverse RTs does not “stretch out” to the 

raw RT scale. For example, a reviewer (Giacomo Spinelli) notes that the interaction between 

previous RT and congruency (critical for the temporal learning account in explaining the 

LLPC effect) is between two factors with a main effect. Hypothetically then, if we assume 

that an autocorrelation does exist in response times (as proposed by the temporal learning 

account), but that this autocorrelation is equivalent for congruent and incongruent trials 

(unlike the temporal learning account prediction), then an inverse transform could reduce the 

slope for the (typically slower) incongruent trials relative to the (typically faster) congruent 

trials. This would create an underadditive interaction between previous RT by congruency in 

the inverse scale that does not exist in the raw scale. That is, previous RT may be explaining 

an effect that only “exists” in the inverse scale.13 According to this view, the apparent 

 
13 Giacomo Spinelli suggested some simulated data to illustrate this point, which I have reproduced and 

extended (see Excel document in the OSF repository). In particular, it is possible to create a situation (albeit 

somewhat artificial) in which there is an autocorrelation in RTs and a main effect of congruency that are 

additive, which results in a more underadditive interaction after an inverse transform. On the other hand, these 
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temporal learning effect in the inverse scale is an artifact that is not applicable to the LLPC 

effect in the raw scale. In the present section, I will perform an analysis that tests this notion 

directly. This section will additionally demonstrate that previous RT does explain the LLPC 

effect in the raw RT scale. 

 Admittedly, it is difficult to test for a potential impact of previous RT on the LLPC 

while both (a) allowing previous RT to predict variance on the inverse time scale and (b) 

measuring the LLPC on the raw RT scale. There is, however, a two-step analysis approach 

that can achieve these goals, which was applied to each of the three datasets separately. To 

avoid confusion, the procedure is illustrated in Figure 8. The first step involves computing 

raw RT residuals from the temporal learning model assessed on the inverse scale. To do this, 

previous and current RT were first inverse transformed (Figure 8a). As in Cohen-Shikora and 

colleagues (2019), current and previous RTs faster than 300 ms were trimmed (i.e., to 

normalize the Q-Q plots) and previous RT was centered on the mean. Next, an LME was 

preformed as before, but without PC as a factor. That is, previous RT, congruency, and the 

previous RT by congruency interaction were entered as fixed factors, with subject, item, and 

(for the applicable datasets) experiment random intercepts. This initial LME is used for only 

one purpose: to compute individual-trial predicted inverse RT (Figure 8b). This predicted 

inverse RT can then be simply transformed back to the raw RT scale (i.e., by applying the 

−1000/RT transform again) to get a temporal learning predicted RT on the raw scale (Figure 

8c). Next, this predicted RT can be subtracted by the observed raw RT for each observation 

to get a raw residual RT (Figure 8d). The net result of this first step is simply to subtract out 

the temporal learning prediction from the raw response times. 

(Figure 8) 

 The second step of the analysis merely involves comparing the magnitude of the 

 
artificial situations do not produce the large modulations of the LLPC effect when analyzed like in the analyses 

to follow. 
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LLPC effect in the pure raw scale to that in the raw residuals. That is, the impact of previous 

RT on the LLPC effect is being assessed on the raw scale (as in the GLMM analyses), except 

that previous RT has been allowed to predict variance in current RT and congruency in an 

inverse scale. At this point, previous RT has already been allowed to explain what variance it 

can, so neither an LME nor a GLMM are needed. Instead, we can simply compute the 

congruency effect (i.e., incongruent − congruent) for each participant on raw RTs and the raw 

residual RTs and run an ANOVA on the PC (mostly congruent vs. mostly incongruent) by 

scale (raw vs. residual) congruency effects (Figure 8e). This produces a significant decreases 

in the LLPC effect in the residual relative to raw scale of 30% (6.49 ms) in Hutchison (2011), 

F(1,224) = 4.437, MSE = 57627, p = .036, 20% (6.34 ms) in Bugg (2014), F(1,70) = 4.761, 

MSE = 5324, p = .032, and 11% (2.85 ms) in Gonthier and colleagues (2016), F(1,88) = 

20.051, MSE = 794, p < .001. 

 What these analyses show is that the variance that (inverse) previous RT is explaining 

in the LLPC effect is not only within the inverse scale of response times. Instead, it also 

“transforms out” to the raw RT scale. Stated more simply, controlling for temporal learning 

biases does significantly decrease the LLPC effect in raw RTs as long as the temporal 

learning assessment is fair. Thus, we can clearly see that the reason why a GLMM on raw 

RTs produced different results was simply because of the negative impact of the skew in the 

key predictor variable (previous RT) and dependent variable (current RT): the effect is 

present in raw RTs, but it simply is not captured well when previous RT is asked to predict 

variance in a purely linear way in abnormal scatterplots. Together, these results provide a 

clear explanation for the discrepancies between the LME and GLMM analyses in Cohen-

Shikora and colleagues (2019).14 

 
14 It might also be worth mentioning that the GLMM consistently failed to converge in all analyses including 

previous RT, albeit less severely in random intercept models. In contrast, the model converges with inverse 

transformed data in all LME models. 
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Other Lines of Evidence for Temporal Learning 

 The previous section demonstrated that previous RT does explain variance in the 

LLPC effect in the raw response time scale if predictions are generated from the theory-

anticipated and data-supported inverse form. Notably, however, the LLPC effect remains 

robust in all datasets with this approach. As already mentioned, this is anticipated a priori 

from the temporal learning account, as previous RT is only a rough proxy of pace. The same 

applies to the other analyses performed by Cohen-Shikora and colleagues (2019): attempts to 

eliminate the LLPC effect with previous RT, or even multiple previous RTs (see their 

Analysis 3), should not succeed unless timing biases are completely modelled (which they 

should not be according to the temporal learning account). The obvious limitation, however, 

is that it is difficult to determine whether the remaining LLPC effect is due to temporal 

learning or conflict monitoring, as both accounts predict the same effect. In that sense, the 

current data are not sufficient to argue against a contribution of conflict monitoring to the 

LLPC effect. Instead, they demonstrate that concern is warranted. In this final section, I will 

discuss both converging evidence for a temporal learning bias in the LLPC effect and some 

potentially problematic data for the simple learning view. In my view, some of the empirical 

lines of evidence provide compelling support for the temporal learning view, though other 

results raise questions and further research will certainly be needed. 

 First, I have shown in a series of reports that one does not have to manipulate conflict 

proportions to produce a PC-like interaction. Simply manipulating the pace of the task with 

more “easy” relative to “hard” items, and vice versa, produces the same interaction pattern. 

As one example, Schmidt (2013b) used a simple letter identification task. On each trial, 

participants saw only a letter (D, F, J, or K) and were simply required to press the 

corresponding key on the keyboard. Unlike a conflict task (e.g., Stroop), there were no 

distracting stimuli and thus no conflict. The only manipulations were the contrast of the target 
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digit on a given trial (high vs. low) and the proportion of high versus low contrast trials 

(mostly easy vs. mostly hard). Of course, participants respond faster to high contrast (easy to 

see) targets than to low contrast (slightly harder to see) targets, but this contrast effect was 

also moderated by proportion easy. Just like a PC effect, the contrast effect was larger in the 

mostly easy context relative to the mostly hard context. This is exactly what the temporal 

learning account would predict. Conflict is not relevant, only the pace, and the pace is faster 

in the mostly easy condition. The conflict monitoring account, of course, cannot explain this 

finding, as there is no conflict to monitor or adjust to. Schmidt (2014) further confirmed that 

this proportion easy effect is not specific to items by using the same sort of biased/transfer 

item design as described earlier for the LLPC procedure. What these results illustrate is a 

relatively pure example of why we should expect a PC-like interaction in a LLPC procedure 

even without conflict monitoring. 

 Of course, observing a temporal learning effect in one procedure does not necessarily 

imply that the same learning effect will be observed in another procedure. On the other hand, 

at least some post hoc explanation seems necessary to explain why a general impact of trial 

pace on performance would be eliminated in a conflict task environment. Still, even if we 

assume that temporal learning biases should equally well apply in proportion congruent 

experiments as they do in proportion easy experiments, it does not necessarily follow that 

said learning biases explain all of the LLPC effect. Of course, this caveat should not lead us 

to either favour or disfavour the idea that conflict monitoring additionally contributes to the 

LLPC effect, but does leave open the possibility. 

 In that vein, a recent set of experiments by Schmidt (2017) aimed to more clearly 

adjudicate between a pure temporal learning view and conflict monitoring. Prime-probe 

conflict tasks with direction word distracters and targets (essentially word-word direction 

Stroop) were conducted with the typical LLPC design. That is, some biased words (e.g., “up” 
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and “down”) were manipulated for PC and some intermixed transfer items (e.g., “left” and 

“right”) were not manipulated. In a control condition, this produced a robust LLPC effect. In 

the critical “long wait” condition, however, task pace was manipulated by presenting “wait 

cues” on some of the biased item trials. Participants had to wait for a brief amount of time 

(until the cue disappeared) before making a response. This, at least roughly, served to match 

response speed and accuracy in the mostly congruent and mostly incongruent conditions. 

This eliminated the LLPC effect. Note that in the control (short wait) condition, the same 

wait cues were presented but more briefly. These experiments provided a clear dissociation 

between the pure temporal learning and control views. According to the temporal learning 

account, only the pace of responding matters. Thus, the LLPC effect should be eliminated. 

According to the conflict monitoring view, however, conflict matters. The long wait 

manipulation preserved the conflict proportions, so a LLPC effect still should have been 

observed. 

 It might be argued that the wait cues somehow interfered with conflict processing or 

control adjustments (albeit: only in the long wait condition). It is not clear why the conflict 

monitoring account should predict this a priori, however. It is also worth noting that Cohen-

Shikora and colleagues (2019) incorrectly state that “there was no congruency effect in the 

longer wait condition that eliminated the list-wide PC effect,” such that there was no conflict 

to adjust to. This is incorrect. The speed of responding to congruent and incongruent trials 

was only equated for the filler “wait trials,” not by eliminating conflict but by requiring 

temporary withholding of the selected response. Congruency effects were large and robust for 

the critical test trials, and this congruency effect merely did not change in magnitude across 

the mostly congruent and mostly incongruent lists. One might alternatively assume that 

matching response times on the filler trials equates conflict in the two lists, but it is difficult 

to see how this should be the case. Response times were effectively matched for congruent 
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and incongruent items with the wait manipulation, but not by eliminating the mismatch in 

stimulus or response information on incongruent trials (and also not by introducing a 

mismatch for congruent trials). One might postulate that the wait duration prevents conflict 

from occurring, but the timings of the stimulus events in the wait cue procedure seem to 

present difficulties for this view. For instance, the distracter was presented in advance of the 

target, and then removed from the screen (after 133 ms). After an additional blank screen (67 

ms), the target was then presented briefly (133 ms) along with the wait cue, only the latter of 

which remained on the screen. Thus, participants could not know whether or not they could 

“wait” while the distracter was on the screen and for the target they only had a brief amount 

of time to process it. As such, it is not clear why conflict should not occur while processing 

said target. At minimum, supplemental ad hoc assumptions seem necessary to explain why 

conflict monitoring would not occur under these conditions. The wait cue data may not be the 

last word on the subject, but do currently favour a pure temporal learning view. Another 

critique might also be that the wait cue data were from a prime-probe task, rather than, say, 

Stroop. The present author sees no compelling reason to favour Stroop, however, particularly 

when a robust LLPC effect was observed in prime-probe, then eliminated with the same 

materials. Follow-up research with different task procedures (e.g., Stroop, Simon, flanker, 

etc.) is certainly welcome, of course. 

 These added lines of evidence for temporal learning biases supplement evidence from 

the modelling approach. With one exception to be discussed shortly, these studies represent 

the only investigations (that I am aware of) directly aiming to put the temporal learning 

account of the LLPC effect to an empirical test, and all data point in one direction. Until 

conclusive evidence can be presented that are contrary to the pure temporal learning view 

(along with some alternative explanation for the modelling results above), these findings 

should therefore be worrying for the conflict monitoring perspective. 
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 Another series of studies by Spinelli, Perry, and Lupker (2019), however, took a 

different approach to controlling for temporal learning effects, which produced results less 

favourable for a (pure) temporal learning view. Their first two experiments made use of 

picture-word Stroop tasks, where participants either identified the category of (Experiment 

1a) or named (Experiment 1b) pictures and ignored superimposed words that were either 

congruent or incongruent in meaning with the picture. Their primary evidence against a 

contribution of temporal learning to their LLPC effects was the absence of a congruency by 

previous RT interaction. However, they conducted their analyses with GLMM (in the 

identical fashion as Cohen-Shikora et al., 2019), which the present paper has shown to be 

problematic. An additional potential complication is that they did not use an inducer-

diagnostic type design, but instead used a large set of non-repeated stimuli. Their reasoning 

for this is that eliminating stimulus repetitions eliminates the contingency biases. However, 

this is only true at the level of exact stimulus matches. At a categorical level, a contingency 

still exists, as illustrated in Table 1. In the categorization experiment, the distracting word 

category is predictive of the categorization response, similar to non-conflict categorical 

contingency learning experiments (Schmidt, Augustinova, & De Houwer, 2018). Granted, in 

the naming experiment, the distracting word category is not predictive of a particular 

response, but rather only of the category of potential target responses. Thus, in addition to 

limitations with the control for temporal learning biases, it is not completely clear whether 

the measured LLPC effect is free of indirect contingency biases. Interestingly, in a second 

experiment the authors failed to find “proportion easy” effects (discussed above) with a 

resolution manipulation (i.e., high vs. low resolution stimuli), similar to the above-mentioned 

contrast manipulations, on their picture stimuli (i.e., with the distracting words removed) 

using a naming response. They did find evidence of timing biases in the proportion easy 

experiment, but not of the same form as observed by Schmidt (2013b, 2014, 2016b). In 
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particular, participants were overall slower in the mostly hard list, but the resolution effect 

was not modulated by proportion easy. This suggests that, at least in the context of their 

experiments with naming of a large set of non-repeated stimuli, the response criteria are set 

by participants in a different manner. In particular, the results seem consistent with the time 

criterion account (Lupker et al., 1997), according to which a fixed (i.e., rather than dynamic) 

criterion is set for each of the mostly easy and mostly hard lists. If so, then this could indeed 

prove to be a less problematic approach to controlling away temporal learning biases: a 

timing effect is certainly present, but not one that should produce a spurious LLPC effect. 

Table 1. Contingency manipulation of Spinelli and colleagues (2019). 

Picture Category 
Word Category 

animal human being food man-made object 

mostly congruent     

  animal 27 3 3 3 

  human being 3 27 3 3 

  food 3 3 27 3 

  man-made object 3 3 3 27 

     

mostly incongruent     

  animal 9 9 9 9 

  human being 9 9 9 9 

  food 9 9 9 9 

  man-made object 9 9 9 9 

 

 Globally, the interactive effects in proportion congruent and proportion easy 

experiments are consistent with other findings in the timing literature, such as mixing costs. 

A mixing cost is the observation that performance on easy and hard items is reduced in mixed 

lists (i.e., with both easy and hard items intermixed) relative to pure lists (i.e., with pure easy 

and pure hard lists; Forrin, 1975; Grice, 1968; Grice & Hunter, 1964; Los, 1994, 1996, 

1999a, 1999b; Lupker et al., 1997; Niemi, 1981; Sanders, 1977; Van Duren & Sanders, 

1988). The PEP model simulates mixing costs with the same mechanism that produces LLPC 

effects (Schmidt, De Houwer, & Rothermund, 2016). Roughly, (fast) congruent trials in the 

mostly congruent list are akin to the (fast) easy trials in pure easy lists and (fast) incongruent 
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trials in the mostly incongruent list are akin to the (fast) hard trials in pure hard lists. The 

(slower) congruent and incongruent trials in mixed lists are comparable to (slower) easy and 

hard items in mixed lists. Thus, the literature with such list mixing manipulations is also 

generally consistent with the basic premise of the temporal learning account presented here. 

In some cases, though, an overall mixing cost is not observed, and homogenization is 

observed instead: easy items are notably faster in the pure easy lists relative to mixed lists, 

whereas hard items are somewhat slower in the pure lists (Chateau & Lupker, 2003; 

Kinoshita & Mozer, 2006; Lupker et al., 1997; Lupker, Kinoshita, Coltheart, & Taylor, 2003; 

Rastle, Kinoshita, Lupker, & Coltheart, 2003; Taylor & Lupker, 2001). This is effectively the 

same interaction minus the main effect of mixing, but this pattern is inconsistent with the 

LLPC effect and with the predictions of the temporal learning account: incongruent trials 

should be responded to more slowly (not more quickly) in the mostly incongruent list if this 

homogenization pattern (without a mixing cost) is present. 

 The resolution data of Spinelli and colleagues (2019) data are consistent with this 

homogenization-only pattern of results (i.e., slower responses to hard items in the mostly hard 

list). Notably, the homogenization-only pattern seems to only occur in studies with a large 

stimulus set, often but not exclusively with naming responses (Lupker et al., 2003), similar to 

that of Spinelli and colleagues, which may explain the discrepancy. The typical conflict 

paradigm used to study conflict monitoring is more akin to the procedures that have produced 

mixing costs and proportion easy interactions than those that have found homogenization-

only effects and that of Spinelli and colleagues. Indeed, as one added caveat, naming with 

large stimulus sets does not even produce a typical “conflict” effect: congruent trials are 

responded to faster than incongruent trials, but both are responded to faster than neutral 

(Schmidt, Cheesman, & Besner, 2013). This suggest positive priming, even for incongruent 

stimuli, and not conflict-driven interference. Whether it makes sense to talk about conflict 
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monitoring when there is seemingly no conflict is thus uncertain, which may therefore be 

another reason to be cautious in interpreting findings with large stimulus lists like in Spinelli 

and colleagues. 

 On the other hand, Cohen-Shikora and colleagues (2019) discuss other empirical work 

that, though not directly related to temporal learning, may be interpreted in favour of the 

conflict monitoring view. For instance, in completely unbiased lists (i.e., no PC 

manipulations) a “LLPC effect” can be created via instructions that misleadingly tell 

participants about congruency proportions or attentional needs (Bugg, Diede, Cohen-Shikora, 

& Selmeczy, 2015; Entel, Tzelgov, & Bereby-Meyer, 2014). It is important to note, however, 

that the “simple learning” view of LLPC effects does not propose that attention is, globally 

speaking, uncontrollable. Indeed, this would be an unsupportable view. The Stroop literature 

provides clear evidence of attentional control: participants can follow instructions to attend to 

the colour while ignoring the word or, conversely, to attend to the word and ignore the colour 

(i.e., in reverse Stroop; e.g., Blais & Besner, 2006). That instructions which (explicitly or 

implicitly) tell participants to increase or decrease attention to distracters lead to adjustments 

of attention (and thus the Stroop effect) is not surprising. It is also a different question than 

whether participants given a fixed goal of attending as best as they can to the target (while 

ignoring the distracter) dynamically adjust attention in response to monitored conflict. 

 Cohen-Shikora and colleagues (2019) also point to modulations of LLPC related to 

other factors which may be easily regarded as control related. For instance, the LLPC effect 

in Hutchison (2011) was modulated by the working memory capacity of participants. High 

span participants produced a smaller LLPC effect, likely indicating more stable control of 

attention. Although only indirect, this might suggest that what the LLPC effect is measuring 

is related to attentional control. On the other hand, working memory span could equally well 

influence temporal learning. Indeed, it has been observed that high working memory capacity 
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participants maintain focus on the target task better, whereas low working memory capacity 

participants are less narrowly focused on the target task and can, perhaps unintuitively, learn 

more about task-irrelevant information such as timing regularities (Woehrle & Magliano, 

2012). Alternatively, LLPC effects may have been reduced simply because congruency 

effects were much smaller in high working memory capacity participants (e.g., due to better 

filtering of the distracter), leaving a smaller effect to be modulated by timing (or other 

mechanisms such as conflict monitoring). The above accounts, of course, assign a role of 

attention on working memory capacity, but it does not clearly follow that modulations of 

LLPC effects by working memory capacity imply that the base LLPC effect is due to conflict 

monitoring. 

 Relatedly, influences of the LLPC of one task can be observed on other tasks (Funes 

et al., 2010; Torres-Quesada et al., 2013; Wühr et al., 2015). For instance, Wendt, Luna-

Rodriguez, and Jacobsen (2012) observed that the time to complete visual search of stimuli in 

normal flanking distracting positions was increased in mostly incongruent lists. Findings such 

as these might be less easy to explain in terms of simple temporal learning biases, especially 

if the overall task pace is different for the two tasks. On the other hand, decisional processes 

(like temporal learning) have been proposed for a wide range of cross-task conditions like 

this outside of the conflict task domain (Kiger & Glass, 1981). For instance, response times 

on easy and hard math problem assessments are influenced by whether intermixed sentence 

verification trials are either uniformly easy or mixed easy and difficult (mixing cost). As 

stressed in the previously-mentioned quote by Kiger and Glass, such observations are 

repeatedly observed in differing literatures and paradigm-specific explanations (such as 

conflict monitoring) are repeatedly proposed that only explain the narrow effect of interest 

(e.g., LLPC effect) and not the trend across multiple unrelated paradigms. 

 Taken together, some of the most direct tests of timing biases on LLPC effects 
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suggest strong support for the temporal learning account. Other findings, though perhaps less 

direct tests of the dissociation between temporal learning and conflict monitoring, may or 

may not be as easily integrated into a simple learning view. For these reasons, further 

research is certainly needed. Indeed, the current picture is muddied by the inherent difficulty 

in controlling for a complicated influence like rhythmic timing. The hope of the present work 

is merely to highlight reasons why the temporal learning account should not be tossed aside, 

as suggested by Cohen-Shikora and colleagues (2019; and as echoed by Spinelli et al., 2019). 

Final Thoughts 

 In summary, the present article has aimed to show several things. First, the failure of 

previous RT to eliminate the LLPC effect in modelling approaches should not be taken as 

evidence in favour of conflict monitoring. The temporal learning account (unlike the conflict 

monitoring account) does predict that there should be some variance to capture in this way, 

but simply does not predict that this approach should work to fully eliminate the LLPC effect. 

Second, inverse (or similar) transformations of data are not inherently bad and can often even 

be the preferred or necessary approach. The specific application to LLPC effects is arguably 

the correct approach. Indeed, although certainly not convention, one may even argue that 

“response rate” (with transformed data) is the more sensible way to assess response time data 

by default, or at least when investigating inter-trial autocorrelations. Third, the inverse 

scaling does not actually distort the LLPC effect itself, but analyses on raw RT do distort the 

relation between previous and current RTs and this is supported by the significant decreases 

in the autocorrelations observed in the present report. Of particular import, the relationship 

between previous RT and the current trial congruency effect is substantially decreased in the 

raw relative to inverse RT scale. It is this fact that explains why GLMM seemingly produces 

little more than noise in the temporal learning tests, whereas the LME on transformed data 

provides clear and consistent evidence for temporal learning biases across multiple datasets. 
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Indeed, it is difficult to support the notion that we should prefer to quantify any variable on 

one scale (e.g., raw RT) when the same variable on another scale (e.g., inverse RT) explains 

notably more variance (using the same number of degrees of freedom). Fourth, even on raw 

RTs, an effect of temporal learning biases is still observed if previous RT is allowed to first 

explain variance on the inverse scale. Thus, the variance that inverse previous RT explains in 

the LLPC effect does “transform out” to the raw RT scale. Fifth, there are lines of converging 

evidence for a temporal learning bias in the LLPC effect. While the literature as a whole 

paints an ambiguous picture as to whether the simple learning view is completely or only 

partially true, data do exist that seem problematic for the conflict monitoring view. 

 In the concluding paragraph of Cohen-Shikora and colleagues (2019) the authors 

make a strong assertion: 

“[W]e cannot justify recommending that researchers adopt additional controls to 

account for temporal learning when investigating list-wide PC effects.” 

Globally, I find it too strong to suggest that temporal learning biases can be safely ignored on 

the basis of the extant data. It seems especially strong to favour results from one approach 

that produce largely null findings (GLMM) over another approach that produces relatively 

consistent evidence in favour of temporal learning (LME), especially without an explanation 

for why such a discrepancy in the results of two approaches exists in the first place. While I 

do agree that attempts to “model away” temporal learning biases with statistical models are 

challenging, compelling evidence for a temporal learning bias does exist across a range of 

statistical modelling and experimental approaches, both inside and outside the attentional 

control domain. Of course, even if a temporal learning bias does exist, said bias may or may 

not explain the entirety of the LLPC effect. Some early datasets are suggestive (esp., 

Schmidt, 2017) and others raise questions. I look forward to future results to further clarify 

this intriguing issue. 

 At a more general level, the present paper aimed to draw attention to two key 
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considerations that are often overlooked in the literature. Firstly, decision-based processes, 

such as the setting of evidence accumulation criteria (e.g., as proposed by the temporal 

learning account), have substantial influences on speeded response time behaviour. 

Unfortunately, such influences are often not orthogonal to manipulations of content. The 

present manuscript discussed the particular case of proportional manipulations of filler items 

in a LLPC manipulation, but the same concern can apply to other proportion/filler 

manipulations, along with other popular design types, such as with sequential manipulations 

(e.g., see Schmidt & Weissman, 2016). Indeed, as hinted at above by the warning of Kiger 

and Glass (1981), there is a very real danger that the same wheel will continue to be 

reinvented in numerous domains when the role of decision-related processes are eventually 

appreciated. Or, even more problematically, the role of decision-related processes may never 

be realized in many areas. To avoid such problems, more systematic consideration of 

decision-related processes seems warranted. 

 The second broader aim of the present work was to present a different view on data 

transformation. As I have argued in the present report, transformed data need not be viewed 

as a “corruption” of a true raw effect. Depending on the research question, transformed data 

may be inappropriate in some cases, absolutely necessary in other cases, and in yet other 

cases the choice of whether to use raw or transformed data may be of little import. Though 

some have rightly pointed out scenarios in which transforms (such as inverse or log) are 

inherently problematic (Balota et al., 2013; Lo & Andrews, 2015), capable of inversing the 

direction of certain types of interactions, it is important to note that this concern is only 

applicable to certain scenarios.  
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Figure Captions 

Figure 1. Example proportion congruent effect. The congruency effect is smaller when most 

trials are incongruent relative to when most trials are congruent. 

Figure 2. (a) Classic 1/f (or pink/flicker) noise in a participant from Bugg (2014). Note the 

local correlations (similar adjacent RTs) with both short and long-term fluctuations in 

response times. The insert displays the same data randomized to produce zero-

correlation white noise. (b) Simulated data showing an autocorrelation between 

current RT and prior RTs of varying lags. 

Figure 3. Top panels illustrate the different frequencies of fast to slow responses in the 

mostly congruent (left) and mostly incongruent (right) lists. Bottom panels present a 

simplified illustration of how temporal expectancies can produce a LLPC effect. 

Notes: dotted line = response threshold, slopes indicate rate of evidence accumulation 

for the correct response. 

Figure 4. Ex-Gaussian simulated data (left) and the same data after an inverse transform 

(right). Arrows illustrate how the transform moves the tails of the distribution. 

Figure 5. Simplified example of how an inverse transform can influence an interaction. Note 

that while the raw response times (left) are additive, an under-additive interaction is 

present in the transformed data (right). 

Figure 6. Simplified example of why diffusion models produce ex-Gaussian response times. 

Linear increases in drift produce greater-than-linear increases in RT and variance. 

Note: black lines indicate mean trajectory and the surrounding grey lines indicate 

variances. 

Figure 7. Scatterplots of the relation between current and previous RT on raw (left) and 

inverse transformed (right) scales. 
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Figure 8. Illustration of the two-step modelling procedure: (a) current RT is inverse 

transformed (InvRT) and Previous RT is inverse transformed and centered 

(InvPrevRT), (b) Subject, Congruency, and InvPrevRT are entered into a LME to 

generate predicted InvRT values (InvPred), (c) InvPred is inverse transformed back to 

the raw scale (RawPred) to have the temporal learning prediction in the raw scale, (d) 

RT (raw) is subtracted from RawPred to get a raw residual (RawResid), (e) the 

congruency effect as a function of PC is computed separately in RawResid and simple 

(raw) RT, and a simple PC x Scale ANOVA is conducted to see whether the LLPC 

effect is reduced in raw residuals. 
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