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ABSTRACT
Arithmetic problem solving is a crucial part of mathematics education. However, existing problem
solving theories do not fully account for the semantic constraints partaking in the encoding and
recoding of arithmetic word problems. In this respect, the limitations of the main existing models
in the literature are discussed. We then introduce the Semantic Congruence (SECO) model, a the-
oretical model depicting how world and mathematical semantics interact in the encoding, recod-
ing, and solving of arithmetic word problems. The SECO model’s ability to account for emblematic
results in educational psychology is scrutinized through six case studies encompassing a wide
range of effects observed in previous works. The influence of world semantics on learners’ prob-
lem representations and solving strategies is put forward, as well as the difficulties arising from
semantic incongruence between representations and algorithms. Special attention is given to the
recoding of semantically incongruent representations, a crucial step that learners struggle with.

What does it take to solve an arithmetic word problem? It
goes without saying that finding the solution requires to be
able to read and understand the problem statement, as well
as to handle its numerical values and compute the solving
algorithm. But is it enough to simply know how to read
and count?

Several studies have highlighted robust effects suggesting
that solving arithmetic word problems involves processes
other than mere procedural ones, that have yet to be
accounted for within a unified theory. For instance, Hudson
(1983) showed that finding a solution to the problem “There
are 5 birds and 3 worms. How many more birds than
worms are there?” was considerably more difficult for kin-
dergarteners than answering the question “How many birds
won’t get a worm?,” despite striking similarities between
these two situations. Bassok, Wu, and Olseth (1995) showed
that after being taught the algorithmic solution of a problem
describing objects assigned to people (e.g., computers given
to secretaries), participants could more easily transfer it to
problems involving objects assigned to people (e.g., prizes
given to students), rather than to problems involving differ-
ent semantic relations, such as problems involving symmet-
rical sets of people (e.g., doctors “assigned” to other
doctors). In a study with primary school pupils, Coquin-
Viennot and Moreau (2003) found that to calculate the
number of flowers a florist needs in order to give five roses
and seven tulips to each person among 14 people, factoriza-
tion (i.e., adding five and seven before multiplying the total

by 14) was more commonly used if the wording mentioned
that the flowers were grouped in a bouquet than if it did
not. Finally, Thevenot and Oakhill (2005, 2006) showed that
the choice between two alternative solving algorithms is
influenced by the cognitive costs of each strategy. Facing a
problem statement where the solution was usually obtained
by calculating the value of “x � (yþ z),” they found that
participants’ preferences shifted in favor of the more eco-
nomical sequential strategy “(x� y) � z” when presented
with higher values.

Separately, these studies have all been accounted for
within a given framework of arithmetic word problem solv-
ing; either the schema theory (Kintsch & Greeno, 1985), the
situation problem model (Reusser, 1990; Staub & Reusser,
1995) or the semantic alignment framework (Bassok, 2001).
However, taken together, these studies on wording effects,
content effects, and re-representation processes display a
range of findings that, to our knowledge, remain to be
explained within a common model. To address this issue,
we hereby propose a Semantic Congruence (SECO) model
accounting for how the interactions between the solver’s
knowledge about the world (the world semantics) and the
solver’s knowledge about mathematics (the mathematical
semantics) mediate the conceptual and procedural sides of
arithmetic word problem solving. We believe that such a
model should help pave the way toward the development of
new instruction methods by providing a unified account of
a range of effects whose considerable influence on students

CONTACT Hippolyte Gros hippolyte.gros@cri-paris.org Center for Research and Interdisciplinarity, Paris Descartes University, 12 rue de l’�Ecole de
M�edecine, 75006 Paris, France.

Supplemental data for this article can be accessed at publisher’s website.

� 2019 Division 15, American Psychological Association

EDUCATIONAL PSYCHOLOGIST
https://doi.org/10.1080/00461520.2019.1691004

http://crossmark.crossref.org/dialog/?doi=10.1080/00461520.2019.1691004&domain=pdf&date_stamp=2020-02-14
http://orcid.org/0000-0002-4151-0715
http://orcid.org/0000-0002-3645-6742
http://orcid.org/0000-0003-0044-3437
https://doi.org/10.1080/00461520.2019.1691004
https://doi.org/10.1080/00461520.2019.1691004
http://www.tandfonline.com


at all levels tends to be underestimated. Before further speci-
fying the SECO model’s inner workings, a description of the
range of effects that current theories of arithmetic word
problem solving do account for seems in order.

Arithmetic word problem solving theories

Numerous works have highlighted the fact that arithmetic
word problems which can be solved using identical arith-
metic operations may vary greatly in terms of solving diffi-
culty, be they additive (Carpenter & Moser, 1982; Nesher,
Greeno, & Riley, 1982; Riley, Greeno, & Heller, 1983) or
multiplicative (Greer, 1992; Squire & Bryant, 2002;
Vergnaud, 1983) problems. The two most prominent
approaches of arithmetic word problem solving which have
attempted to account for such effects are the schema and
the situation model theories (see Thevenot & Barrouillet,
2015, for a review).

The schema model

The schema model (Kintsch & Greeno, 1985; Rumelhart,
1980; Schank, 1975; Schank & Abelson, 1977) posits that the
resolution of arithmetic word problems relies on the cre-
ation, activation, and implementation of schemas. Schemas
are defined as propositional data structures stored in long-
term memory, as a result of repeated encounters with prob-
lems sharing the same structure. These operatory structures,
once created, can be activated and implemented with
numerical values from any given context (any cover story),
thus providing the solver with a valid solving algorithm.
According to this view, the solvers read the problem state-
ment and “the verbal input is transformed into a conceptual
representation of its meaning, a list of propositions”
(Kintsch & Greeno, 1985, p. 111). The solvers then activate,
in their long-term memory, the schema sharing the same
propositional structure as the one in the problem statement.
They then instantiate this schema with the specific numer-
ical values of the cover story to interpret and solve the prob-
lem. For instance, in a compare problem, a sentence such as
“Tom has three more marbles than Joe” cues a “have more
than” propositional structure which uses three arguments:
two corresponding to Tom and Joe’s sets, and one corre-
sponding to the quantitative proposition associated with the
comparison (Kintsch & Greeno, 1985). According to Kintsch
and Greeno (1985), this propositional structure can be
implemented with the values of any problem using a “have
more than” proposition and can be used to choose the solv-
ing algorithm.

However, the schema theory has been challenged by
works showing that minor modifications within the wording
of otherwise structurally identical problems led to significant
differences in terms of solvers’ performances. Notably, De
Corte, Verschaffel, and De Win (1985) showed that modify-
ing the wording of problems sharing the same schema
impacted both their difficulty and the type of errors solvers
make. For example, problems such as “Bob got 2 cookies.
Now he has 5 cookies. How many cookies did Bob have in

the beginning?” were only solved by 36% of the children in
the study, whereas slightly reworded problems such as “Bob
had some cookies. He got 2 more cookies. Now he has 5
cookies. How many cookies did Bob have in the beginning?”
were solved by 55% of the children.

Another convincing piece of evidence showing the limita-
tions of the schema model was brought by Thevenot and
Oakhill (2005), who asked adults to solve problems such as
“How many marbles do John and Tom altogether have
more than Paul? John has 29 marbles, Tom has 13 marbles
and Paul has 26 marbles.” This problem is usually solved
with the algorithm (29þ 13)� 26¼ 16, which could be
explained by the schema model by the fact that the word
“altogether” activates a Combine schema (29þ 13) and the
words “have more than” activate a Comparison schema
(42� 26; Riley et al., 1983). However, the authors showed
that when the numerical values were replaced by 3-digit
numbers (e.g., replacing 29, 13, and 26 by 749, 323, and
746, respectively), participants tended to use another algo-
rithm to solve the problem: (749� 746)þ 323¼ 326. Indeed,
since in both cases John has three more marbles than Paul,
it would be easier to calculate the difference between John’s
and Paul’s marbles and add it to the number of marbles
Tom has. Yet, participants only used this strategy when the
use of 3-digit numbers made it too difficult to calculate the
solution using the other algorithm. This experiment suggests
that participants were able to decide not to blindly apply the
schemata activated by the problem and to construct an alter-
native problem representation instead.

Another argument showing the limitations of the schema
theory came from Thevenot (2010), who asked participants
to solve arithmetic problems and later presented them with
an unexpected recognition task involving problems that
were either identical to the source problems, inconsistent
with the source problems, or that described the same situa-
tions using paraphrases. The results showed that paraphras-
tic problems had a higher recognition rate than inconsistent
problems. Since, in paraphrastic problems, the propositional
structure of the initial problems was lost by the paraphras-
ing, it follows that recognition was not solely based on a
propositional representation, contrarily to what the schema
view predicts.

Thus, additional interpretative processes are believed to
come into play and modulate the solvers’ performance. In
this regard, effects of content—interpretative effects linked
to the semantic content of the cover stories—have been
shown to influence participants’ performance in a way that
is not accounted for by the schema theory (Coquin-Viennot
& Moreau, 2003; De Corte et al., 1985; Gvozdic & Sander,
2017; Reusser, 1988; Vicente, Orrantia, & Verschaffel, 2007).
This significant blindspot in the schema theory explains the
need for a more comprehensive model accounting for the
content effects reported in the literature.

The situation model approach

Due to these limitations, the schema theory has since lost
ground against an alternative approach, which builds on the
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theoretical frameworks of mental models (Johnson-Laird,
1980, 1983) and situation models (Van Dijk & Kintsch,
1983). This approach originates from Reusser’s model, the
Situation Problem Solver (SPS), which applies the situation
model approach to arithmetic word problem solving (1989,
1990, 1993; Staub & Reusser, 1995). The SPS model accounts
for the integration by the solver of the set of information
present in the problem statement. Namely, it proposes that
reading a word problem results in the creation of an epi-
sodic situation model featuring every functional relation
depicted within the text and presenting an analogous struc-
ture to that of the described situation (Reusser, 1990). For
example, in Hudson’s study (1983) mentioned in the intro-
ductory paragraph of this paper, the “How many more birds
than worms are there” problem refers to a static episodic
situation model where birds and worms are conceived of as
two disjoint sets of entities, whereas the “How many birds
won’t get a worm” problem leads to the creation of a
dynamic episodic situation model in which the relation
between the two sets is highlighted (Staub & Reusser, 1995).
The episodic situation model is then translated into a prob-
lem model containing the relevant structural elements and
relations from the point of view of the question to be
answered. This qualitative representation of the problem
statement differs from the purely propositional structure
proposed by the schema theory. According to Staub and
Reusser (1995), this problem model is then reduced to its
abstract mathematical gist, which can be translated into a
solving algorithm.

Although it builds on the idea that solvers reason based
on mental representations analogous to the situations
described in the problem statements, the SPS model does
not explicitly describe the processes that form those repre-
sentations. Indeed, according to the situation model view,
“the structure of a representation corresponds to the struc-
ture of what it represents” (p. 18244, Johnson-Laird, 2010).
If a perfect structural correspondence is assumed between
the representation itself and what is represented from the
external world, this means that the former is presumed to
be a faithful internalization of an external state. The proc-
esses through which this internalization is achieved are not
explicitly in the scope of the SPS approach. In particular,
the idea that background knowledge of an individual might
influence the internalization process and eventually interfere
with the faithfulness of the internalization relatively to the
external situation is not a significant topic in the SPS model.

The notion that the structure of a representation is iden-
tical to the structure of what it represents is hardly compat-
ible with the thought that one depicted situation could be
interpreted differently by different individuals. In other
words, saying that a problem statement is encoded as a rep-
resentation whose structure is analogous to the problem
statement’s is tantamount to saying that only one represen-
tation can be encoded from a given problem, regardless of
variations in interpretation that can occur over time or
individuals.

The semantic alignment contribution

Other works have been more attentive to this issue, showing
that solvers’ prior knowledge strongly constrains the repre-
sentations they construct, in an often detrimental way
(Thevenot, 2017). Bassok et al. (1995) showed that the world
knowledge regarding the entities involved in arithmetic
problems influenced the transfer to isomorphic permutation
problems; for instance, problems involving objects and peo-
ple, such as caddies and golfers, spontaneously evoke an
asymmetric structure (“get”), in which golfers are getting
caddies and not the opposite since in our world, in most
pragmatic contexts, people receive objects and not the other
way around. In contrast, they showed that problems involv-
ing two sets of people (e.g., kids from two nurseries) evoke
a symmetric structure (“pair”), in which children from both
nurseries are paired together. These semantic relations
between the problem elements thus constrain participants’
representations of the problems.

Bassok, Chase, and Martin (1998) provided additional
evidence for this claim, by giving participants the names of
different types of objects and asking them to use these
objects to create arithmetic word problems involving either
an addition or a division. For objects linked by an asymmet-
ric functional relation (e.g., a container/content relation
between vases and tulips), participants created more division
problems (e.g., the number of tulips divided by the number
of vases) than additions. On the other hand, with objects
belonging to the same superordinate category, such as tulips
and daffodils, participants created mostly additive problems.

This issue is all the more important given how Bassok
et al. (1998) showed that the association between subclasses
of objects and specific solving strategies is reinforced
throughout education by the exercises proposed in mathem-
atical textbooks. They showed that a vast majority of div-
ision problems in math textbooks include elements linked
by asymmetrical relations whereas additive problems feature
elements belonging to categories of the same taxonomic
level such as red and blue marbles. This reinforcement
throughout the years of arithmetic school teaching may con-
tribute to the development and strengthening of robust solv-
ing biases among learners, making it especially important to
model these interpretative effects of content to better capit-
alize on them.

The semantic alignment framework (Bassok, 2001) aims
at accounting for these interpretative effects of content. It
goes beyond the SPS view by specifying how world know-
ledge regarding the entities involved in the problem influen-
ces its representation by the solvers. It proposes that the
solvers’ knowledge about the objects described in the prob-
lem cover stories leads them to abstract an interpreted struc-
ture. This structure varies from one problem statement to
another, depending on the roles defined by the world know-
ledge regarding the entities, even when those roles are not
relevant—or even deleterious—with regard to the mathemat-
ical structure of the problems and the task at hand. Thus,
the structure that is abstracted from arithmetic problems
can facilitate the resolution when the relations it entails are
semantically aligned with the objective mathematical
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relations of the problem, that is when the problem’s seman-
tic structure can be used “to infer, by analogy, its objective
mathematical structure” (Bassok, 2001, p. 402; Bassok
et al., 1998).

For example, performing divisions on problems involv-
ing oranges and baskets will prove easier than performing
divisions on problems involving oranges and apples,
because division is semantically aligned with asymmetrical
structures such as the one between containers (the bas-
kets) and their content (the oranges). Supporting this
view, Bassok, Pedigo, and Oskarsson (2008) showed that
addition facts are activated when they are primed by cat-
egorically related words usually associated with addition
(e.g., the tulip–daisy pair is semantically aligned with add-
ition), but not in cases of misalignment, when they are
primed by unrelated words and are misaligned with add-
ition (e.g., hens and radios are not usually connected in
an addition model). This was confirmed in an ERP study
by Guthormsen et al. (2016) who showed N400 and P600
effects indicating a disruption of conceptual integration
when participants were presented with misaligned prob-
lems (e.g., a problem in which flowers and vases were
added together). These results indicate that, in case of
semantic alignment, the semantic content of a problem
statement can provide crucial clues to the solvers.

Alternative encodings and re-representation

The strengths of the previous approaches are their versatility
and their ability to each account for a range of effects docu-
mented in the literature. However, it seems that one crucial
question remains open: how is it possible to solve a problem
whose semantic content is misaligned with its solution?
How can one ignore those misleading clues and go beyond
their initial encoding of a problem statement to reach a
solution? Overcoming semantic misalignment would mean
abstracting a new, different structure of the depicted situ-
ation. For instance, encoding a problem with caddies and
golfers as a distributive structure where golfers are assigned
to caddies instead of the opposite.

However, the issue of whether several alternative inter-
preted structures can be encoded from the same problem
statement, by different individuals or by one individual over
time, has yet to be considered. Ross and Bradshaw (1994)
showed that the initial interpretation of an ambiguous story
could be influenced by the beforehand presentation of
another story sharing some degree of similarity with the lat-
ter. This suggests that two different semantic structures can
be abstracted from a same situation, depending on partici-
pants’ past experiences and prior knowledge.

Furthermore, studies on re-representation showed that it
is possible for the solvers to turn their initial representation
into a new one, allowing them to overcome their initial
inappropriate interpretation and find the solution (Davidson
& Sternberg, 2003; Gamo, Sander, & Richard, 2010; Sander
& Richard, 2005; Vicente et al., 2007). For example, to facili-
tate the solving of a change problem in which a quantity is
added or subtracted from an unknown start set, solvers can

represent the problem in terms of a part-whole structure
and turn it into a search for the unknown part (Riley et al.,
1983). Thus, it is important to tackle what precisely happens
when a solver’s initial encoding of a problem statement fails
to trigger the use of an appropriate solving algorithm, and
to get a better understanding of how solvers might over-
come an earlier inadequate representation and recode the
same problem. Bearing this issue in mind, we wish to build
on the SPS model and on the notion of interpreted structure
in order to provide a unified model addressing the processes
involved in arithmetic problem solving.

The Semantic Congruence (SECO) model

The SECO model is based on the notion of semantic con-
gruence in arithmetic word problem solving, which it
defines and operationalizes by accounting for the interac-
tions between world semantics, mathematical semantics, and
algorithms. Within the SECO model (Figure 1), the product
of the interaction between world semantics and mathemat-
ical semantics needs to be put in correspondence with an
algorithm, by means of an interpreted structure.

Components

The components depicted in the SECO model are character-
ized below; they will be further exemplified in a second
phase through six case studies.

� Problem statement: The problem statement is a text
describing the elements of the problem and the situa-
tion(s) in which they interact as well as their relations
and associated values.

� World semantics: World semantics is characterized by
the solver’s non-mathematical, daily-life knowledge about
the elements of the problem statement as well as the rela-
tions between them. For example, world semantics may
include knowledge that flowers can be put into vases,
that there is a co-hyponym relation between oranges and
apples, or that to go from the first to the third floor of a
building one must pass by the second floor first. There is
indeed a broad literature showing that understanding,
reasoning, decision-making and problem solving are
influenced by an individual’s knowledge regarding the
entities involved and their relations (e.g., Bassok, 2001;
Carey, 2009; Gelman, 2003; Gentner, 1988; Goswami &
Brown, 1990; Johnson-Laird, 1983; Kotovsky, Hayes,
& Simon, 1985; Stanovich, 1999; Van Dijk &
Kintsch, 1983).

� Mathematical semantics: Mathematical semantics is
characterized by the solver’s mathematical knowledge
that is applicable to the problem statement. For example,
mathematical semantics may include knowledge that to
calculate the size of a set, one needs to add the size of all
its subsets, or that to evenly share a collection of objects
among several sub-collections, one needs to divide the
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number of elements in the collection by the number of
sub-collections.

� Interpreted structure: The interpreted structure is
abstracted from the problem statement, integrating pieces
of information present in the text with the properties,
relations, and constraints inferred from the world seman-
tics. This notion stems from Bassok and colleagues’
research (Bassok & Olseth, 1995; Bassok et al., 1995, see
above). Since the mathematical semantics evoked by the
problem statement is activated during the encoding, the
interpreted structure can feature algebraic values or be
instantiated by the numerical values. For example, world
semantics about fruits will lead co-hyponyms such as
oranges and apples to be encoded as subsets of a superset
of fruits.

� Solving algorithm(s): A solving algorithm is a finite,
unambiguous set of actions that leads to the correct
answer when properly executed. Multiple solving algo-
rithms may stem from a given problem statement (e.g.
De Corte et al., 1985; Gamo et al., 2010; Große & Renkl,
2006; Kouba, 1989; Leikin & Lev, 2007; Thevenot &
Oakhill, 2005).

� Deep structure: This notion stems from Chi and col-
leagues’ work (Chi, Feltovich, & Glaser, 1981). We define
it as the semantic structure integrating the elements of
the problem that are relevant for its resolution and
describing their relations. This structure does not rely on
world semantics but on mathematical semantics. It has
been designated as “the objective mathematical structure”
(Bassok, 2001), or as “the principle of the problem”
(Ross, 1987); for non-mathematical problems, the corre-
sponding notion is “the problem space” of an expert
solver (Newell & Simon, 1972).

Processes

The processes depicted in the SECO model are characterized
as follows:

� Initial encoding: This process describes how the problem
statement is abstracted into an interpreted structure
depending on the world and mathematical semantics
evoked by its wording. The world semantics activated by
the problem statement constrains the representation of
the depicted situation, either by highlighting or by over-
shadowing specific relations between the problem’s enti-
ties. Similarly, the mathematical semantics evoked by the
problem statement also shapes the mathematical relations
represented in the interpreted structure.

� Specification: This process describes how an interpreted
structure may be specified into an algorithm, as a result
of the relations it describes and the numerical values it
features. When the relations depicted in the interpreted
structure hold a mathematical meaning, they can be
translated into relevant operations through this specifica-
tion process. Not every interpreted structure can be
specified into a relevant solving algorithm, since the rela-
tions highlighted during the encoding process may not
be relevant, and the encoded values may not be the ones
needed to solve the problem. A deep structure, on the
other hand, may be specified into any relevant algorithm,
since it depicts every relevant relation, independently
from the influence of world semantics, contrarily to an
interpreted structure.

� Expert encoding: The expert encoding describes the
hypothetical process that may happen when experts ini-
tially encode problems within their domain of expertise.
As stressed by Chi et al. (1981) experts are believed to be

Figure 1. The SECO model.
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able to disregard the cover story of a problem and dir-
ectly encode its deep structure. According to this view,
an expert may use mathematical semantics and disregard
world semantics to directly abstract the deep structure
from the problem statement.

� Recoding: Since not every deep structure can be specified
into a relevant solving algorithm, the recoding describes
how, when the initially encoded interpreted structure
cannot be translated into an appropriate, tractable algo-
rithm, a new representation can be abstracted by recod-
ing the interpreted structure. This process is akin to the
re-representation said to be necessary to overcome diffi-
culties in arithmetic problem solving (Vicente et al.,
2007). It relies on mathematical semantics to recode the
situation and build a new structure, closer to the deep
structure of the problem. It is a costly process that does
not systematically happen.

Inner workings

The SECO model integrates these notions in the following
way: it posits that when reading a problem statement (a),
the lay solvers will initially encode the problem according to
the world semantics (b) as well as to the mathematical
semantics (e) evoked by the problem statement, from which
they will abstract an interpreted structure (c). This inter-
preted structure is therefore semantically aligned with the
solvers’ knowledge about the elements present in the prob-
lem statement and can differ from one solver to another for
the same problem statement, depending on the state of their
world and mathematical semantics. Because it holds a math-
ematical meaning, this interpreted structure may be specified
into an algorithm (d). This algorithm stems from the pro-
cedural knowledge that is attached to the mathematical
semantics activated by the problem statement. In cases in
which no tractable algorithm can be derived from the inter-
preted structure encoded, the solver faces a dead-end and
the need for a recoding process arises. Such a process would
appeal to mathematical semantics (e) and not to world
semantics, in order to encode a new representation consist-
ent with the deep structure (f) of the problem and thus
allow the use of a new algorithm as a result. Contrarily to
the interpreted structure from which no tractable algorithm
might be derived, this deep structure can be specified into
any relevant solving algorithm (d). Finally, the model also
introduces the possibility that an individual with sufficient
expertise regarding a specific type of problem might directly
abstract a deep structure (f) from a problem statement (a),
without first extracting an interpreted structure (c) influ-
enced by world semantics (b).

SECO underlines a key aspect of arithmetic word prob-
lem solving consisting in the congruence between the
semantic knowledge evoked by the problem statement and
the mathematical semantics required to find its solving algo-
rithm. If the world semantics attached to the elements in a
problem statement is not congruent with the mathematical
semantics required to solve the problem, the initial inter-
preted structure will not be translated into a valid solving

algorithm. Indeed, only the mathematical semantics congru-
ent with the world semantics evoked by the problem state-
ment will be used during the initial encoding of the
problem. In cases where the relevant mathematical semantics
is not congruent with the world semantics evoked, an extra
recoding step is necessary to recode the interpreted structure
into a new representation closer to the deep structure of the
problem, making the process longer and more difficult.

As in the SPS model, SECO considers that a mental rep-
resentation of the situation is abstracted when reading an
arithmetic word problem. However, contrarily to this model,
SECO does not consider that this representation maps onto
the structure of the world: by integrating the role of world
and mathematical semantics in the encoding of the problem
statement, SECO accounts for the fact that there is no
unique way to mentally model a problem statement. A situ-
ation can be encoded differently by different individuals,
and the abstracted structure may be recoded into a new rep-
resentation if need be.

Accounting for existing results: Case studies

In order to better understand SECO’s contribution in con-
trast to the current models of arithmetic problem solving,
we propose to tackle representative results in the field
through SECO’s lens and compare it to the accounts of
these results by the two most prominent models of arith-
metic word problem solving, the Schema model and the
Situation Problem Solver model. As our presentation of
SECO shows, its main contribution resides in its depiction
of the influence of world semantics on solving strategy
choice as well as of the necessity to semantically recode the
problems in case of failure. While SECO does not intend to
resort solely to world semantics to account for every pos-
sible variation in arithmetic problem solving, as other sour-
ces of differences exist (e.g., algorithm computation abilities
or reading comprehension), its central added value consists
in its depiction of the influence of world semantics on the
encoding, recoding and solving of the problems.

We now assess SECO’s unique ability to explain the
effects reported by a set of six studies mentioned in the
introductory section of this paper and presenting representa-
tive results in the field. We believe that altogether, these
studies prove challenging to the existing models of arith-
metic problem solving. We first present two cases illustrat-
ing the key issue of the influence of world semantics on the
selection of a solving strategy. The following two case stud-
ies then showcase the other central feature of the SECO
model: its depiction of the existence of a recoding process
for semantically incongruent representations. The last two
case studies show how SECO proposes a new take on clas-
sical rewording effects, from which important educational
implications arise.

World semantics issues

The first two studies we detail illustrate the key influence
one’s knowledge about the world can have on one’s problem
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solving performance. They describe examples of the effect
the content of a problem statement can have on the inter-
pretative processes at play. In other words, they showcase
the role of world semantics in arithmetic word prob-
lem solving.

Case 1: Bassok et al.’s account of interpreted structures
Empirical findings and authors’ perspective. Compelling evi-
dence of the influence of world semantics on the interpreted
structure have been provided by Bassok et al. (1995).
Participants who were unable to solve an initial permutation
problem were presented with a short lesson accompanied by
a training problem and its solving equation: 1

nðn�1Þðn�2Þ
(n being the size of the set of elements being assigned). The
participants then had to solve a transfer problem using the
same algorithm. The main result was that participants who
were first trained on a problem involving an assignment of
objects to people (O!P) had a dramatically higher success
rate when they transferred the solution to other O!P prob-
lems (89% of success) than those who had to transfer the
solution to “people assigned to objects” (P!O) problems
(0% of success).

According to the authors, the participants interpreted the
structure of the problems by using their world knowledge
about the roles of the entities involved in the problems, i.e.,
they spontaneously interpreted the problem as a situation in
which “objects are given to people” and constructed differ-
ent interpreted structures depending on which entities were
described. The semantic (mis)alignment between the train-
ing and transfer problems’ interpreted structures accounted
for the participants’ high (or low) success rate in the transfer
problems.

SECO’s account of the results. Because it details how an
interpreted structure is encoded according to the world and
mathematical semantics, the SECO model can account for
this result, see Figure S1 in Supplemental Materials (transfer
to objects-to-people problems) and Figure S2 (transfer to
people-to-objects problems). As situations where objects are
assigned to people are much more common in daily-life
than situations where people are assigned to objects, in
SECO, the world semantics (b) regarding the assignment of
elements fosters the idea that objects are usually assigned to
people. Therefore, when reading the problem statement (a),
the world semantics (b) should, in both “objects to people”
and “people to objects” problems, result in an interpreted
structure (c) in which objects are assigned to people.

This interpreted structure leads the participants to imple-
ment the algorithm 1

nðn�1Þðn�2Þ (d) with the value corre-
sponding to the size of the set of inanimate objects whereas
they should be thinking in terms of which set is being
assigned to the other. Indeed, given that participants
received limited training, it might be that they did not really
understand the solving procedure in the training problem,
and thus their mathematical semantics (e) regarding the
assignment did not comprise the mathematical notion of
“draw without replacement within a set.” Instead, they sim-
ply implemented the training algorithm by mapping the

semantic roles of the training and transfer problems, and
only considered the fact that n was the size of the set of
assigned objects in the first problem. Thus, they transfer the
algorithm they learned by replacing the n value by the num-
ber of inanimate objects, even if the set of people is the one
being assigned to the set of objects. This leads to correct use
of the algorithm in “object to people” transfer problems
(Supplementary Figure S1) but not in “people to objects”
transfer problems (Supplementary Figure S2) and accounts
for the dramatic contrast between the transfer rates in both
conditions (0% vs. 89%).

Case 2: Coquin-Viennot and Moreau’s account of semantic
constraints
Empirical findings and authors’ perspective. In their study
bearing on the use of factorization and expansion algorithms
among third and fifth graders, Coquin-Viennot and Moreau
(2003) showed that problems such as “For a prize-giving,
the florist prepares for each of the 14 candidates 5 roses and
7 tulips. How many flowers does the florist use in total?”
were less often solved using factorization (44% among fifth
graders) than problems identical in every aspect except for
the presence of a superordinate structuring term such as “a
bouquet”: “For a prize-giving, the florist prepares for each of
the 14 candidates a bouquet made up of 5 roses and 7
tulips.” (68% among fifth graders).

This study illustrates how slight modifications in the
wording of isomorphic problems can influence the initial
encoding. The interpretation proposed by the authors was
that the presence of the term “bouquet” favored participants’
perception of the two subsets as parts of the same superset
and led them to combine the sets into a single entity. We
propose a complementary and more systematic explanation
using the SECO architecture.

SECO’s account of the results. In SECO’s view, the use of
the word “bouquet” in the problem statement evokes the
world semantics stating that a bouquet is a group of flowers,
which is compatible with Coquin-Viennot and Moreau
(2003) interpretation. The SECO model would account for
these results as depicted in Supplementary Figure S3 (prob-
lem statement without the “bouquet” term) and Figure S4
(problem statement with a structuring term).

Since the “no bouquet” problem statement
(Supplementary Figure S3, a) mentions roses and tulips, the
world semantics (b) regarding those elements (i.e., “roses
and tulips are two different kinds of flowers”) is activated
and favors the encoding of roses and tulips as two disjoint
sets in the interpreted structure (c), making the grouping
of roses and tulips together less salient. The abstracted
interpreted structure (c) thus leads most of the
participants to use the expansion algorithm (d) congruent
with the representation of tulips and roses as two distinct
sets “(14� 5) þ (14� 7).”

By contrast, in order to use the factorization algorithm
“14� (5þ 7),” a solver is either required to infer that tulips
and roses can be grouped together (e.g., in a bouquet consti-
tuted of different flowers), despite the absence of any
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structuring cue, or to recode the situation (c) according to
mathematical semantics (e��) stating that a superset consist-
ing of m sets of x elements and m subsets of y elements has
the same size as a superset consisting of m subsets of “xþ y”
elements, so as to abstract a deep structure (f) of the prob-
lem. This deep structure highlights the two different group-
ing strategies (grouping by individuals or grouping by types
of flowers) and is thus congruent with both the factorization
algorithm and the expansion algorithm.

On the other hand, the resolution of the problem men-
tioning a structuring element (the bouquet) leads to differ-
ent steps as detailed in Supplementary Figure S4. When the
problem statement (a) mentions that the tulips and the roses
are grouped together and form a bouquet, then the world
semantics (b) related to the bouquet can also be used, in
addition to the world semantics related to roses and tulips
as flower species. Referring to a bouquet activates the notion
of grouping within a single set and helps the solver encode
an interpreted structure (c) increasing the saliency of the
two subsets of flowers as parts of the same “bouquet” set,
compared to when the structuring element was not men-
tioned in the wording. The interpreted structure (c) leads
the solver to calculate the total number of flowers by adding
the number of flowers in each bouquet. Therefore, the fac-
torization strategy 14� (5þ 7) is the one being mostly used
by solvers in this situation. The use of the expansion algo-
rithm “(14� 5)þ (14� 7)” is less frequent on such problems
and can be the consequence of participants focusing on the
distinction between the two types of flowers, roses and
tulips, that leads them to count those separately instead of
counting the number of flowers within one bouquet first.
Alternatively, it can also be the consequence of their explicit
use of mathematical semantics (e��) regarding expansion
and development.

Thus, within the SECO model, the difference between the
two problem statements results in a difference between the
world semantics evoked by the statements during the encod-
ing process. Different world semantics result in different
constraints influencing the encoding of the problems, which
lead to different interpreted structures being abstracted, each
of them congruent with a specific solving algorithm (expan-
sion when no structuring element is present in the problem
statement and factorization otherwise).

Other models’ accounts and their limitations regarding
cases 1 and 2
The influence of world semantics displayed by these two
case studies is an effect that clearly falls outside the scope of
the schema model. In Coquin et al.’s case, there is no theor-
etically based reason justifying that the addition of the term
“bouquet” could influence the selection of a completely dif-
ferent problem schema. Similarly, in Bassok et al. (1995)
case, the problem schema in the “objects to people” situation
should be the same as the one in the “people to object” ver-
sion, since the only change introduced between the two
problems was the semantic nature of the entities constituting
the two sets (either people or inanimate objects).

In the original schema model, the reader extracts the
numerical values and their relations by focusing on the
propositional structure of the text (Kintsch & Greeno, 1985).
In Bassok et al.’s work (1995), the sentences “The president
randomly assigns students to prizes” and “The president
randomly assigns prizes to students” have the same propos-
itional structure and should have activated the same schema.
However, because one sentence implied that objects were
assigned to people, and the other that people were assigned
to objects, participants’ strategies differed between the two
problems. The schema theory alone cannot account for this
performance difference without being updated to take into
account solvers’ knowledge about the problems’ entities.

Similarly, the SPS model does not directly integrate the
idea that one’s knowledge about the entities in a problem
could influence the episodic situation model constructed to
solve it. Instead, it postulates that the episodic situation
model that is built depends on the presentational structure
of the problem (text order, narrative point of view, presence
of an explicit question, explicitness of relevant relations and
so forth) but not on the general knowledge imbued in the
problem (Staub & Reusser, 1995). The SPS model relies on
the Situational Model assumption that the structure of a
representation maps onto the structure of what it represents
(Johnson-Laird, 2010), therefore suggesting that there is only
one episodic situation model for each problem, regardless of
participants’ previous knowledge about the entities featured
in a problem. The SECO model, on the other hand, provides
a satisfactory account of those results by proposing that the
world semantics evoked by a problem also depends on the
semantic nature of the elements featured in the prob-
lem statement.

Recoding issues

While the first two case studies focused on the mechanisms
at play during the initial encoding of a problem statement
and their consequences on the solving performances, the
next two case studies highlight how an interpreted structure
resulting in a dead-end can be recoded in certain conditions.
In other words, they focus on participants’ relative ability to
change their initial representation in situations in which
multiple mathematical encodings of the same problem state-
ment are possible: different, equally valid representations
emphasizing distinct relations.

Case 3: Thevenot and Oakhill’s account of alternative
representations
Empirical findings and authors’ perspective. Studying the
influence of number size on the use of solving algorithms,
Thevenot and Oakhill (2005) shed light on the factors trig-
gering the recoding of an interpreted structure into a new
representation. They investigated the strategies used to solve
compare problems by using an operand-recognition para-
digm consisting in interrupting the presentation of the prob-
lem statements to ask participants whether they recognized
specific numbers. Recognition performance was used to
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determine if these numbers were currently maintained in
working memory or if they had already been used in calcu-
lation and had thus started to fade from memory.

They used problems such as “How many marbles does
John have more than Tom and Paul together? John has x
marbles, Tom has y marbles and Paul has z marbles.” The
authors’ findings show that participants used the grouping
algorithm “x� (yþ z)” when the task was not especially
demanding due to the problem’s values being small,
whereas they used the more economical sequential strategy
“(x� y)� z” when the use of larger values implied that the
task had higher cognitive costs. Indeed, the second strategy
is less cognitively demanding because performing two suc-
cessive subtractions allows the solvers to complete a subgoal
“x� y” while reading the problem, and the result of this
operation can be maintained in working memory during
the rest of the problem instead of the two initial values
(x and y).

On the other hand, calculating the value of “yþ z” and
then subtracting it from the value of x requires to maintain
the value of x in working memory until the end of the text
and the final operation. In other words, if the values 636,
345 and 123 appear in that order in the problem statement,
then it is easier to first calculate the value of “(636� 345)”
while reading the text and then subtracting 123 from the
result later on than to memorize the three values to calculate
“636� (345þ 123)” at the end of the problem statement.

SECO’s account of the results. Within the SECO model (see
Supplementary Figure S5), this effect follows from the fact
that the problem statement (a) mentions marbles that are
grouped together and then compared. The interpreted struc-
ture (c) thus features two disjoint sets: one corresponding to
John’s marbles, and the other one to Tom and Paul’s put
together. This interpreted structure (c) is semantically con-
gruent with the grouping algorithm “x� (yþ z)” (d) that is
preferentially used for problems with small values.

When computing the algorithm becomes impossible
because of the larger x, y and z values, some participants
need to recode the situation to avoid maintaining the three
values in memory. By focusing on the mathematical know-
ledge regarding parentheses removal (e��), according to
which “x� (yþ z) is equivalent to x� y� z,” participants
can recode their initial representation into an alternative
representation closer to the deep structure (f) of the prob-
lem, in which Tom and Paul’s sets are perceived as two
independent sets that can successively be removed from
John’s set. They can then switch to the more economical
sequential algorithm “(x� y)� z” (d). In other words, diffi-
culty to compute the algorithm triggered a re-elaboration
process that focused on the mathematical semantics to
recode the problem’s representation.

Case 4: Gamo et al.’s account of world semantics con-
straints and semantic recoding
Empirical findings and authors’ perspective. In addition to
being another illustration of the central role of world
semantics on arithmetic word problem solving, the study

that Gamo et al. (2010) conducted in fourth and fifth grade
classrooms provides valuable insight into the semantic
recoding of the initial, inadequate representation of a prob-
lem into a new, more polyvalent one. In their study, Gamo
et al. used problems that all shared the same formal deep
structure, but that involved different types of elements.
When the elements were known by the solvers to be
unordered entities, such as marbles, scissors or pens, the
authors predicted that the participants would abstract an
interpreted structure emphasizing the cardinality of the situ-
ation, such as an embedded sets structure. This structure
was shown to lead the participants to use a 3-step algorithm
to solve the problems. For example, the problem “John
bought an 8-Euro exercise book and scissors. He paid 14
Euros. A pen costs 3 Euros less than the exercise book. Paul
bought scissors and a pen. How much did he pay?” was
preferentially solved using the 3-step algorithm consisting in
calculating the price of the pen and the price of the scissors
before adding them up: 14� 8¼ 6; 8� 3¼ 5; 6þ 5¼ 11.

On the other hand, when problems involved ordered
units, as is the case in problems involving age, where events
are ontologically ordered on the line of time, the authors
predicted that the participants would abstract an interpreted
structure emphasizing the ordinality of the situation, such as
a timeline where different events are represented as posi-
tions on an axis. This axis-based interpreted structure would
make it possible for the participants to use a different solv-
ing algorithm. For example, the problem “Antoine took
painting courses at the art school for 8 years and stopped
when he was 14 years old. Jean began at the same age as
Antoine and took the course for 3 fewer years. At what age
did Jean stop?” was predominantly solved using a shorter,
more efficient 1-step algorithm: 14� 3¼ 11.

Indeed, the fact that the problem involves durations
makes it easy to see that since Jean and Antoine started tak-
ing the course at the same age, then the difference between
the number of years they each followed the course is equal
to the difference between the age at which they stopped tak-
ing the course. Thus, the problem can be solved without cal-
culating their age when they started taking the class. Both
problems could be solved using both algorithms, but
depending on the elements featured in the problems, partici-
pants preferentially used one or the other of the
two strategies.

In the first experiment of the study, the authors studied
the conditions allowing for strategy change. They divided
the participants into two groups, both of which had to com-
plete a pretest and a post-test in which they had to solve
similar problems using only one arithmetic operation.
Between the two tests, one of the groups followed two 60-
min training sessions during which the children were
instructed to compare the two strategies and incited to see
how the 1-step algorithm could be used even on problems
with unordered entities. They were explicitly trained to iden-
tify their initial semantic representation and they were
shown a visual representation of the deep structure of the
problems to help them recode their initial encoding of the
situation. The other group did not receive such training.

EDUCATIONAL PSYCHOLOGIST 9

https://doi.org/10.1080/00461520.2019.1691004


The two main findings were that children did solve prob-
lems differently depending on the world semantics they
evoked, and that teaching the children to use both strategies
by focusing on the mathematical relations between the enti-
ties described and by studying the deep structure of the
problems yielded significant result in increasing their ability
to use the shorter 1-step algorithm on problems with
unordered elements.

SECO’s account of the results. These findings are a perfect
fit within SECO’s framework, since they show both how
mathematical and world semantics interact in the encoding
of the problem statements into an interpreted structure, and
how this interpreted structure then either leads to the use of
a semantically congruent solving algorithm or is recoded to
allow the use of a semantically incongruent solving strategy.
Indeed, in the case of an age problem (see Supplementary
Figure S6), the world knowledge (b) relating to how time
events are usually conceptualized (as transitions between
positions on a timeline) is evoked by the problem statement
mentioning ages (a). This leads the children to encode an
interpreted structure (c) in which the events described are
represented along a timeline, which lets them directly com-
pare the ages at which they each stopped attending the
classes. This structure can then be specified into the 1-step
algorithm (d) congruent with it.

On the other hand, when reading a problem with
unordered elements (see Supplementary Figure S7), Gamo
et al. (2010) indicate that the encoding is influenced by the
students’ knowledge (b) that the elements can be grouped
together in any order, and that, for example, the scissors can
be indifferently grouped with the pen or with the notebook.
The resulting interpreted structure (c) has an embedded set
structure that leads the students to calculate the value of
each subset (the price of each item). This structure can then
only be specified into the 3-step solving strategy (d). In
order to use the shorter 1-step strategy, the students needed
to use mathematical semantics (e) and recode their repre-
sentation into a new, more polyvalent one (f). This explains
why the only group who increased their performance in
using the 1-step algorithm on problems with unordered
entities was the one that followed a training based on the
mathematical principle behind the use of the 1-step algo-
rithm and the study of the deep structure.

Other models’ account and their limitations regarding
cases 3 and 4
These two last case studies showed that when the initial
encoding of a problem statement does not lead to a satisfac-
tory solving algorithm, a recoding may happen to encode a
new representation congruent with a valid algorithm. As
mentioned previously, in Thevenot and Oakhill’s case, the
idea that a problem could be solved differently depending
on whether it features low or high values falls beyond the
scope of the schema theory. Indeed, if a schema is con-
structed from the text-base, then two text-bases differing
only by the range of their numerical values should result in
two identical schemas being used. Even though it could be

argued that students are switching from a schema to another
depending on the values provided in the problem statement,
such a claim would require a theoretical extension of the
schema model accounting for the conditions under which
such a switch can occur.

Similarly, if the SPS model predicts that one constructs a
representation whose structure is that of the described situ-
ation, then why would two different representations be con-
structed based on the same situation? None of the
aforementioned models of arithmetic word problem solving
directly predicts that an encoding can be recoded depending
on how efficient the algorithm it leads to is.

Finally, regarding Gamo et al.’s results, the schema theory
may state that some problems correspond to a schema (the
so-called ordinal problems) and some do not (the so-called
cardinal problems). However, because this theory does not
take the structure of the solver’s representation into account,
it provides no basis to explain why such a schema would
only be used on some problem statements and not on
others. Specifically, without these semantic features, there is
no a priori reason to predict that words such as “age,”
“during” or “years” would activate a schema corresponding
to the 1-step algorithm whereas words such as “scissors,”
“pen” or “book” would fail to do so.

On the other hand, the situation model approach states
that a representation analogous to that of the situation
described is constructed and used as a basis for reasoning.
Because of that, this theory can explain why different prob-
lems can be represented differently and thus lead to the use
of different algorithms, but the SPS model does not refer to
the fact that solvers interpret the situations through the lens
of their own previous knowledge. In other words, the situ-
ation problem view does not model the constraints imposed
by world semantics on the encoding of arithmetic
word problems.

Interestingly, it can be noted that the influence of general
semantic dimensions such as the cardinal versus ordinal dis-
tinction is compatible with the semantic alignment frame-
work. However, in the semantic alignment framework, the
question of the recoding of semantically incongruent repre-
sentations has not been addressed, and SECO’s predictions
regarding the students’ ability to perform a semantic recod-
ing when given appropriate guidance fall beyond this frame-
work. Thus, the fact that the participants were able to solve
the problems with unordered entities using the 1-step algo-
rithm after the training sessions is not predicted by the
semantic alignment framework, whereas SECO’s take on
semantic recoding aided by mathematical semantics offers a
reasonable explanation of the effect.

Rewording issues

Several works have highlighted how small modifications in
the wording of structurally isomorphic problems could
result in significant performance disparities (Cummins,
1991; Cummins, Kintsch, Reusser, & Weimer, 1988; Davis-
Dorsey, Ross, & Morrison, 1991; Staub & Reusser, 1992;
Stern & Lehrndorfer, 1992; Vicente et al., 2007). Such effects
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have considerable educational implications since they illus-
trate how minor phrasing variations can drastically help (or
hinder) the students’ understanding of a given problem.
As such, they constitute a promising route to assist students
in overcoming some of the obstacles they meet in arithmetic
word problem solving. Here, we focus on two studies show-
casing such rewording effects, to illustrate how SECO can
also account for such emblematic results by depicting the
changes they entail in the interpreted structures abstracted.

Case 5: Hudson’s account of children’s understanding of
differences between sets
Empirical findings and author’s perspective. In his seminal
work on numerical differences, Hudson (1983) compared two
formulations of comparison problems that led to considerably
different levels of performance. Kindergarten children were
told there was, for example, “5 birds and 3 worms,” and they
were asked either “How many more birds than worms are
there?” (25% of correct answers among kindergarteners) or
“How many birds won’t get a worm?” (96% of correct answers
among kindergarteners). The author explains that the use of
“won’t get” reduced the misinterpretation of the “how many
more than” construction by highlighting the one-to-one cor-
respondence between the given sets.

SECO’s account of the results. The SECO model accounts
for those results in the following way. As depicted in
Supplementary Figure S8, an interpretation of Hudson’s
findings within the model would be that the sentence “how
many more birds than worms are there” in the problem
statement (a) evokes aspects of world semantics (b) empha-
sizing the difference between the two sets of elements
(knowledge that birds and worms are two different animal
species) thus inducing a comparison between the two groups
of elements, without specifying how these two groups should
be compared. In contrast, as depicted in Supplementary
Figure S9, the wording of the problem statement (a) in the
“won’t get” condition emphasizes the pairing relation
between birds and worms and evokes a different aspect of
world semantics (b) (i.e., “birds eat worms”) which pro-
motes the mapping between the two sets within the inter-
preted structure (c). Thus, in the “more” condition, the
interpreted structure (c) consists in two disjoint sets of ele-
ments and provides no hint that would trigger a subtrac-
tion algorithm.

By contrast, the interpreted structure (c) in the “won’t
get” condition affords a one-to-one mapping between 3
birds and 3 worms. The “won’t get” condition, therefore,
evokes an interpreted structure that is semantically congru-
ent with an efficient strategy (d), namely counting from 3 to
5. In the “more” condition, recoding the interpreted struc-
ture into a deep structure (f) of the problem remains pos-
sible, but requires using mathematical semantics (e��) about
subtraction, which is not systematically acquired at this early
age, thus explaining the low performance on this task (25%
among kindergarteners). While Hudson accounted for this
finding by stating that comparable constructions of the gen-
eral form “how many more [… ] than?” tended to be

misinterpreted, SECO provides an account of this effect in
terms of representational differences.

Case 6: De Corte et al. (1985) account of reword-
ing effects
Empirical findings and authors’ perspective. De Corte et al.
(1985) used combine, compare and change problems to
study the effects of conceptual rewording on first and
second graders’ performance, and brought further evidence
of the positive effects of specific forms of rewording. For
each problem, they compared a “standard” version with a
“reworded” version that stated more explicitly the relations
between the sets to make them clearer for young students.
For example, one of the compare problems they created was
“Pete has 8 apples. Ann has 3 apples. How many apples
does Pete have more than Ann?”. They compared students’
performance on this problem and on its reworded version:
“There are 8 riders but there are only 3 horses. How many
riders won’t get a horse?”.

Results showed that 47% of first-graders managed to solve
the compare problems in their standard version, whereas 70%
of them managed to solve the reworded version. With a rate
of success of, respectively, 76% on standard compare prob-
lems and 90% on reworded compare problems, second-
graders also benefitted from the conceptual rewording,
although to a lesser extent. The authors explained this differ-
ence between the two conditions by stating that only the
“won’t get” condition provided enough linguistic cues to
compute the difference between the sets, whereas the “more”
condition remained ambiguous to inexperienced solvers.

SECO’s account of the results. SECO provides a complemen-
tary account of these results. In the standard version
(Supplementary Figure S10), the problem statement (a) does
not evoke any aspect of world semantics that could help
with the matching of the two sets in the interpreted struc-
ture (c). Thus, students who have not sufficiently acquired
the mathematical semantics (e��) regarding the calculation
of the difference between two sets will fail to solve the prob-
lem. This explains why standard compare problems had a
low rate of success for first-graders and a higher one for
second-graders.

On the other hand, the reworded problem statement
(Supplementary Figure S11) evokes knowledge about riders
and horses (b) namely the information that a rider is sup-
posed to ride a horse. The interpreted structure (c) thus fea-
tures the pairing of the three horses with their respective
riders and makes it easier to understand how to count the
horseless riders remaining. The mathematical semantics
(e��) is not necessary in this case to solve the problem,
which explains why the performance rate was higher in both
age groups.

Other models’ account and their limitations regarding
cases 5 and 6
As stated by Vicente et al. (2007), the computational models
using problem schema as a basis to explain word problem
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solving behaviors have struggled to systematically explain
the rewording effects of studies such as the two presented
above, due to the relatively weak elaboration of the first
text-processing stage in their models. Both in Hudson
(1983) and in De Corte et al. (1985) study, the initial prob-
lems and their reworded counterparts shared the same struc-
ture according to Riley et al. (1983) classification of additive
one-step problems. However, small modifications in the
wording of the problem statements resulted in significant
performance disparities, an effect that the schema model
would struggle to account for.

On the other hand, the SPS model focuses on the idea
that a representation, the episodic situation model, is built
featuring the relations depicted in the problem statement.
According to Staub and Reusser (1995), this representation
is different in the two conditions, since the “won’t get” situ-
ation imbues the difference with real-world meaning,
whereas the “more” condition only refers to a static, abstract
situation. This suggests that the SPS could have predicted
such rewording effects relying on an elaboration of the
semantic relations described in the text, since it made the
relations between the sets more salient, which explains why
the representation was more accurate and led to a higher
success rate in the “won’t get” condition. However, it can be
noted that any rewording effect capitalizing on prior know-
ledge, such as replacing computers and secretaries by two
sets of doctors in Bassok et al. (1995) work, would fall
beyond the scope of the SPS model.

Conclusion

When taken together, these six case studies show how SECO
can account for varied results within a unified model. While
explanations for these results have been provided by one of
the already existing theories of arithmetic word problem
solving, it appears that none of the aforementioned models
can account for all of them simultaneously. In our view, one
of SECO’s strengths is that it provides an original integrative
framework for the existing results in the literature.

SECO’s added value

The current paper proposes a model detailing the processes
at play in arithmetic word problem solving and accounting
for how algorithms are found by solvers and how their per-
formances may differ depending on the task. SECO
describes how a problem statement is encoded into an inter-
preted structure according to the world semantics and the
mathematical semantics, and how this structure can either
be specified into an algorithm when congruent with one, or
recoded into a deep structure thanks to mathematical
semantics in order to solve a semantically incongruent prob-
lem. We illustrated its ability to explain a wide range of
effects by confronting SECO, post hoc, to previous studies
presenting challenging results that had yet to be accounted
for within a unified framework.

The idea that there exist different possible encodings of a
situation described in a specific problem is central in the
SECO model, yet this view appeared only recently in the

literature. Ever since Riley et al. (1983) work and their tax-
onomy of additive word problems, the view that a word
problem can be reduced to its objective mathematical struc-
ture and that two isomorphs of the same problem can thus
be considered as equivalent in terms of difficulty for the
solvers was abandoned in favor of an approach putting
more emphasis on the way different arithmetic word prob-
lems are interpreted. It has for example been highlighted by
Riley et al. that combine and compare problems can be
approached very differently by the solvers, even when both
are subtraction problems involving the same numer-
ical values.

However, in the Riley et al. (1983) view, each situation is
attached to only one category in a taxonomy encompassing
all problems, therefore suggesting that there is only one way
to interpret a given situation. Similarly to Socrates’ depiction
of the human ability to “separate things according to their
natural divisions, without breaking any of the parts the way
a clumsy butcher does” (Plato, trans. 2009, p. 64), this view
presumes that there exists a natural breakdown of the situa-
tions depicted by the problems, and that each situation falls
within an objective category.

Within SECO, the interpretation of the problem state-
ment varies depending on the solver’s knowledge: a given
situation may thus lead to different encodings. In order to
solve an incongruent problem, a solver usually needs to
recode the initial representation they have of it. The idea
that an initial representation will be recoded to allow the
use of a solving algorithm is one that was not covered by
Bassok’s semantic alignment framework. Bassok and col-
leagues’ theory focuses on the abstraction of an interpreted
structure during the initial encoding of a problem (Bassok,
2001), yet what happens when this initial encoding leads to
failure hasn’t been addressed, especially in cases in which a
different representation of the situation could allow the solv-
ers to find the solution. When the first interpreted structure
cannot be specified into a valid solving algorithm, SECO
covers the possibility that one recodes the situation and
manages to solve the problem, in accordance with empirical
findings such as the ones reported in Gamo et al. (2010) or
Thevenot and Oakhill (2005).

We propose to take a brief look at the empirical pros-
pects opened by SECO. First, because it accounts for the
part played by world semantics, SECO predicts that different
individuals with different knowledge or experiences about
the world may tackle a problem differently. For instance,
imagine if Hudson’s (1983) problem about birds and worms
had been framed in terms of smurfs and mushrooms
(“There are 5 smurfs and 3 mushrooms, how many more
mushrooms than smurfs are there?”). Children who are
familiar with the Smurfs comic series will know that each
smurf has his or her own mushroom to live in (there are no
housemates in the Smurf village!). Thus, SECO predicts that
these children may be more likely to find the solution to the
problem, because their world semantics about smurfs and
their individual mushrooms will help them to construct a
paired encoding in which each house is assigned to one
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smurf (see Case study 5 for more details on why this should
facilitate the solving process).

More generally, SECO makes the prediction that cultural
differences in the world semantics evoked by a given prob-
lem statement may influence participants’ interpreted struc-
ture and the subsequent strategies they will use to solve a
problem. For instance, it is believed that Indonesian and
English speakers tend to represent durations as linear distan-
ces (e.g., a long time), whereas Spanish and Greek speakers
tend to represent durations as definite quantities (e.g.,
mucho tiempo) (Casasanto et al., 2004). Thus, SECO pre-
dicts that English and Greek speakers may perform differ-
ently on the duration problems used by Gamo et al. (2010)
and described in the third case study.

Second, SECO predicts that modifying the world semantics
evoked by a problem may influence the interpreted structure
encoded. Such representational differences could be measured
by asking participants to produce drawings of the problems
they solved (e.g., Edens & Potter, 2008). Similarly, recognition
tasks may provide a way to probe participants’ representation
of the problems (e.g., Hegarty, Mayer, & Monk, 1995; Mani
& Johnson-Laird, 1982; Verschaffel, 1994), to assess whether
their interpreted structures differed depending on the prob-
lem statements. Third, a central point in SECO is the recod-
ing pathway, according to which one can recode an
interpreted structure into a new representation at a certain
cost. This cost can be measured by higher error rates on
problems needing a recoding and higher response times on
problems successfully recoded (Gros, Sander, & Thibaut,
2019). Future works might even assess the increase in cogni-
tive load associated to this process by measuring physiological
responses such as pupil dilation during the recoding of
semantically incongruent problems.

Fourth, the existence of the expert encoding pathway
may be tested by presenting experts with different problem
statements: SECO predicts that experts’ performance on
problems requiring a recoding may decrease less than that
of lay solvers, due to the possibility for experts to directly
encode the problems’ deep structure, even on incongruent
problems. Fifth, SECO accounts for the fact that students
may experience difficulty trying to solve a problem if they
either lack the relevant world semantics, the relevant math-
ematical semantics, the ability to recode a semantically
incongruent representation or the ability to compute the
solving algorithm. Moreover, SECO predicts that different
errors will be associated with these different shortcomings.
By testing separately students’ mathematical knowledge,
their world knowledge about the entities described in the
problem statement and their ability to compute specific
algorithms, SECO can be used to pinpoint and address dis-
tinct sources of difficulties.

By providing a finer-grained depiction of solvers’ reason-
ing, SECO can inform future works on the encoding, recod-
ing and solving of arithmetic word problems. The
conception of experiments testing the aforementioned pre-
dictions should help determine the explanatory power of
SECO, either bolstering its claims or leading to the develop-
ment of new alternative models.

Semantic congruence as an educational lever to tackle
arduous notions

The current paper defines semantic congruence and suggests
that difficulties might arise when the world semantics
evoked by a problem statement is semantically incongruent
with the problem’s solving algorithm. In this view, semantic
incongruence is a source of interference and should be over-
come by the learners to efficiently solve the encountered
problems. Therefore, developing new methods to help stu-
dents modulate the influence of world semantics in order to
directly access the deep structure of the problems could be
especially promising. Still, moderating the influence of world
semantics is not trivial, since our knowledge about the world
has been shown to be deeply involved in our reasoning, be
it relevant or not (Bassok, 2001; Bassok et al., 1998; Gros,
Sander, & Thibaut, 2016; Gros, Thibaut, & Sander, 2017).

However, world semantics can also have a facilitative
influence. Depending on the semantics attached to a prob-
lem, solvers will access a congruent solving algorithm more
easily than they would with another problem statement. It
has been shown that understanding the situation described
in a problem statement can be enough to successfully solve
a problem, even for children who did not receive any prior
explicit instruction regarding the arithmetic notions required
(Carpenter & Moser, 1982; De Corte & Verschaffel, 1987;
Ibarra & Lindvall, 1982; Thevenot & Barrouillet, 2015). If
the depicted situation is the one “doing the thinking”
(Hofstadter & Sander, 2013, p. 432) then the effort is min-
imal. Depending on the semantics imbued in a situation, its
representation might be more or less congruent with the
deep structure of the problem and thus render it more or
less easy to solve. In this regard, one can imagine that an
abstruse mathematical theorem might seem almost self-evi-
dent if presented in the appropriate semantic setting.

Designing such situations aiming at fostering the under-
standing of a complex notion may be achieved through con-
ceptual rewording, as suggested by Vicente et al. (2007). In
their study, they highlighted that rewording problem state-
ments in a way that makes more explicit the semantic rela-
tions between the problems’ entities is beneficial to the
solvers. Indeed, difficult problems (i.e., problems that had
“to be solved in a different than the actual sequence of the
events denoted in the problem,” Vicente et al., 2007, p. 837)
benefited from conceptual rewording, which referred to sit-
uations in which the underlying semantic relations between
the given and unknown sets were made more explicit than
in the standard version. On the other hand, situational
rewording (i.e., when a problem statement is presented in a
more enriched and elaborated way, e.g., causal relations
between events made more explicit) led to no improvement
compared to the standard version.

In SECO’s view, conceptual rewording was beneficial
because it highlighted the mathematical dependencies
between quantities, and thus favored the mapping of the
world semantics onto the relevant mathematical semantics.
Moreover, simply enriching the semantics of the situation
had no effect on the mapping between the statement and
mathematical representation. Thus, rewording will work
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when it aids in building a representation of the mathemat-
ical semantics that is congruent with the world semantics.

As a consequence, a crucial application of the SECO
model resides in the development of educational interven-
tions treating mathematical learning difficulties by resorting
to world semantics in order to help understand and over-
come some of the learners’ impairments regarding arith-
metic understanding. Because SECO differentiates between
world semantics, mathematical semantics, and algorithms, it
can provide a detailed account of the potential difficulties
encountered by students when learning to solve arithmetic
word problems. The different components described in the
model and the processes that link them are all potential can-
didates from which specific difficulties may stem. Using
SECO, it is possible to differentiate between, for example, a
lack of mathematical semantics (e.g., not knowing about the
commutative property of multiplication) and difficulties in
computing algorithms (e.g., not being able to calculate
3� 50), in order to design targeted interventions which
would help learners overcome their specific difficulties.

Gaining expertise

One of the distinctive features of the SECO model is that it
provides an account of the part played by expertise in the
solving of arithmetic word problems. The expert encoding
pathway as introduced in SECO accounts for the idea,
already developed by Chi et al. (1981), that solvers with suf-
ficient expertise may be able to directly encode the deep
structure of a problem, regardless of the world semantics it
evokes. Data gathered regarding sorting and solving strat-
egies depending on the learner’s level of expertise, in line
with Chi et al. (1981) seminal work, provide converging evi-
dence regarding this view (e.g., Schoenfeld & Herrmann,
1982; Silver, 1981). Thus, a crucial educational issue is to
promote learners’ ability to reach a level of expertise allow-
ing them to directly perceive a problem’s deep structure,
without first encoding an interpreted structure influenced by
their everyday knowledge about the problem’s entities.

However, since even expert solvers have been shown to
sometimes rely on superficial features to determine their
solving strategies (Blessing & Ross, 1996; Novick, 1988),
experts’ ability to ignore the influence of world semantics in
all situations should not be taken for granted. In fact, recent
evidence we collected on problems similar to those described
in the fourth case study suggests that general expertise in
mathematics may not be sufficient to overcome the effects
of semantic incongruence (Gros et al., 2019). In this paper,
we showed that university-educated adults and expert math-
ematicians alike were more likely to deem an arithmetic
word problem unsolvable when its solution was semantically
incongruent with the world semantics evoked by the prob-
lem that when the two were semantically congruent.

Does this mean that direct encoding of the deep structure
is unattainable? Not necessarily. It could be argued that the
influence of world semantics is so pervasive that only spe-
cific expertise on the type of problem that is being solved
(as compared with general expertise in mathematics) may

provide the ability to directly encode the deep structure of
the problem. From an educational perspective, the overall
goal is to teach students either how to directly perceive the
deep structure of the problems they encounter, or at least to
efficiently recode an ineffective interpreted structure.

This raises the question of how one may develop such a
level of expertise. Although conceptual rewording can be
used to make a problem easier to solve, it does not necessar-
ily mean that the solvers will learn to solve other problems
which haven’t been reworded. Correct answers are worth lit-
tle if not associated with an increase in expertise. However,
deliberately engaging in semantic recoding on multiple occa-
sions on problems sharing the same deep structure may be a
path to reach this goal.

In Gamo et al. (2010) study, students’ performance
improved after they were explicitly told to compare
“duration problems” and “number of elements problems,”
and taught how to semantically recode the number of ele-
ments problems to use the 1-step algorithm to solve them.
As suggested by the rich literature on deliberate practice
(Charness, Tuffiash, Krampe, Reingold, & Vasyukova, 2005;
Ericsson, 2004, 2008; Ericsson, Krampe, & Tesch-R€omer,
1993; Lehtinen, Hannula-Sormunen, McMullen, & Gruber,
2017; Ward, Hodges, Starkes, & Williams, 2007) repeated
training focused on specific tasks such as semantic recoding
may be a promising path to develop top-level expertise.

In this perspective, we know ever since Gick and
Holyoak’s work (1983) on analogical transfer that using dif-
ferent examples describing analogous situations can help
represent their common structure (see also Braithwaite &
Goldstone, 2015; Kotovsky & Gentner, 1996; Richland,
Stigler, & Holyoak, 2012). It thus seems realistic to identify,
for any type of problem, which problem statement as well as
which sequence of training problems might be the most
beneficial to help learners abstract a representation as close
to the deep structure as possible. A congruence fading pro-
cess akin to concreteness fading (Fyfe, McNeil, Son, &
Goldstone, 2014) could thus help learners abstract the deep
structure of the problems by resorting to increasingly incon-
gruent examples. An interesting venue to capitalize on such
effects would be to alternatively present problems attached
to different world semantics congruent with different repre-
sentations, in order to help learners switch from an initial
representation to another one, more efficient with regard to
the resolution of the problem. Such scaled sequences of
problems could be especially efficient if adapted to each
learner through the use of Technology Enhanced Learning
(Paquette, L�eonard, Lundgren-Cayrol, Mihaila, & Gareau,
2006; Shute & Zapata-Rivera, 2012; Tchounikine, 2011).
Although these propositions are only hypothetical at this
stage, we consider these prospects to be promising leads for
conducting further research and for helping foster transfer
in mathematics education.

Broader application of the SECO model

An idea at the heart of the SECO model is that the congru-
ence or the incongruence between the world knowledge
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elicited by a problem statement on one hand and the formal
structure of the problem on the other hand can account for
solvers’ successes and failures, as well as for their need to
recode their representations in incongruent situations. We
believe this approach can also bear fruits if applied to other
educational fields, such as mental arithmetic and non-math-
ematical problem solving.

Regarding arithmetic non-word problems, studies have
shown that embedding an algorithm in a problem statement
carrying world semantics may facilitate its computation
(Baranes, Perry, & Stigler, 1989; Koedinger, Alibali, &
Nathan, 2008; Koedinger & Nathan, 2004; Stern &
Lehrndorfer, 1992). SECO details how, depending on the
congruence between world semantics and mathematical
semantics, the solving process can be either favored or hin-
dered by such an embedment. If an algorithm is embedded
in a problem statement carrying congruent world semantics,
then finding the solution should be easier.

However, SECO also predicts that a problem statement car-
rying world semantics incongruent with the algorithm itself
should have the opposite effect. Additionally, basic arithmetic
operations carry a semantic meaning even when they are not
framed within a problem statement (Bell, Swan, & Taylor,
1981; Fischbein, 1989; Fischbein, Deri, Nello, & Marino, 1985;
Graeber, Tirosh, & Glover, 1989; Lakoff & N�u~nez, 2000;
Tirosh & Graeber, 1991). According to Fischbein et al. (1985)
view, arithmetic operations such as multiplication and div-
ision are attached to tacit models imposing constraints on
their computation that have no mathematical relevance. For
example, they argue that seeing division as the sharing of a
collection of objects into a number of equal sub-collections
implies that the divisor must be a whole number and that the
quotient must be smaller than the dividend.

SECO addresses what happens when the world semantics
evoked by the problem statement is incongruent with the
objective mathematical structure of the problem. For
example, believing that “to divide is to equally share” might
lead solvers to rely on semantic knowledge regarding equit-
able sharing, making it harder to find the solution to arith-
metic problems that go against this belief, such as “8� 0.5.”
In this view, SECO can guide the analysis of the solvers’
activity when faced with such semantic incongruence by
showing how the world semantics imbued in the operations
themselves evoke an interpreted structure that is incompat-
ible with the solving procedure.

By describing the influence of world semantics on arith-
metic problem solving, SECO also underlines the facilitative
role that a semantically congruent context may have on
arithmetic reasoning in general. Interestingly, the influence
of context on the understanding of arithmetic principles has
been the focus of several works studying principles such as
commutativity or inversion (see Prather & Alibali, 2009, for
a review). According to Resnick’s (1992, 1994) theory of
how mathematical competence is built, arithmetic under-
standing should emerge following a concrete-to-abstract
transition, shifting from an initial object context to a verbal
context, then a symbolic context, and then finally to an
abstract context. For instance, learning about the

commutative property of the addition of two sets of objects
may not necessarily mean that learners will immediately be
able to transfer this knowledge to the addition of numbers
in general (Prather & Alibali, 2009).

In a study about 7- to 9-year-olds’ understanding of arith-
metic principles, Canobi (2005) showed that some children
were helped by a concrete aid to display an understanding of
a particular conceptual relation. She showed that some of the
participants had an easier time explaining mathematical
notions (subtraction complement and inversion principles)
when presented with concrete objects instead of abstract
numbers. Regarding the principle of commutativity, Cowan
and Renton (1996) found that 6- to 9-year-olds showed a bet-
ter understanding of commutativity in an object context or in
a symbolic context, rather than in an abstract context. In
other words, performance on mathematically identical tasks
depended on the context in which the tasks were presented.
As with SECO’s description of how the semantic embedding
of a word problem can influence learners’ ability to find its
solution, children’s performance in Cowan and Renton’s
study depended on the context of the task. Finally, in a study
on arithmetic problem solving, Jordan, Huttenlocher, and
Levine (1992) also found that disparities between middle-
income children and low-income children disappeared when
the questions were asked using objects rather than when the
problems were only posed verbally.

Although few studies have been designed to specifically
target the effects of context on principle understanding, and
some have reported null effects (e.g., Canobi, Reeve, &
Pattison, 2003), most works in the literature are compatible
with the theory that children first learn the meaning of
arithmetic principles in a grounded context before moving
up to higher degrees of abstraction (Prather & Alibali,
2009). A parallel can be drawn with SECO, which accounts
for the embedding of an arithmetic problem within a prob-
lem statement evoking specific world semantics. In both
cases, solvers need to learn how to move away from a
grounded encoding and toward a more abstract representa-
tion of the situation. We mentioned earlier how the use of
increasingly semantically incongruent examples may comple-
ment a learning strategy based on concreteness fading (Fyfe
et al., 2014), to guide learners from a concrete grasp of a
problem to a more abstract understanding of its solution
principle. It may be possible to develop a similar strategy in
arithmetic learning, by progressively varying the semantic
congruence between the concrete situations presented to the
learners and the arithmetic notions to be taught.

Regarding problem solving in general, it is well estab-
lished that the knowledge one has about the entities
depicted in a problem can constrain their ability to find a
solution (Clement & Richard, 1997; Duncker, 1945; Griggs
& Cox, 1982; Kotovsky et al., 1985). Consider, for example,
the physics problem consisting in asking whether when a
car performs a circular motion at constant speed, its left-
side door moves at the same speed as its right-side door or
not. Most people trying to solve this problem will use their
experience with cars and their world knowledge about rigid
objects and represent the two doors of the car as parts of
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the same object. A common erroneous answer is that when
a car moves, every part of the car moves at the same speed
since every passenger departs and arrives at the same time.

We believe that the principles underlying SECO can help
understand the solvers’ reasoning on such a physics prob-
lem. In this case, the world semantics used to encode the
problem into an interpreted structure will hide some physic-
ally relevant aspects of the problem. Unless participants use
physics semantics to perform a semantic recoding of the
problem that dissociates the two doors as moving along two
different circular paths which entails that they do not neces-
sarily travel the same distance, their world semantics will
lead them to the erroneous conclusion that the doors travel
at the same speed. The notion that congruence between
world knowledge and conceptual knowledge associated with
a domain of instruction (e.g., mathematical semantics in the
case of arithmetic problems, physics semantics for mechan-
ics problems, and so on) can constrain the representation of
situations and alter one’s reasoning, unless a reinterpretation
of the situation happens, seems to be a promising idea. In
this regard, the scope of the SECO model could be extended
in order to describe the encoding and recoding of situations
from different domains of instruction, according to the
world semantics and to the domain-related semantics influ-
encing the solvers’ interpretation.

Conclusion

The question of how one reasons when solving an arith-
metic word problem is a major issue of mathematical educa-
tion. Understanding the determinants of problem solving is
a crucial step in order to identify the difficulties that should
be addressed when teaching mathematics. The SECO model
provides ground for a distinction between the mathematical
semantics, the world semantics, and the algorithms, as well
as the way they interact and apply to familiar situations.
Those interactions specify the steps involved in the encoding
and the recoding of arithmetic word problems.

Being able to foster a semantic recoding in order to
improve analogical transfer would be a major step forward
in the field of arithmetic teaching, and might help pupils
overcome some of their numerous difficulties regarding
word problem solving (Gamo et al., 2010; Hegarty, Mayer,
& Green, 1992; Richland et al., 2012; Thevenot &
Barrouillet, 2015; Verschaffel & De Corte, 1997).
Strengthening our grasp of the effects of semantic congru-
ence and incongruence could thus pave the way toward the
development of new teaching strategies, building on world
and mathematical semantics to guide the students toward a
more abstract and more efficient understanding of the
encountered problems, contributing to their conception of
mathematical notions (Richland et al., 2012).
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Figure S1. Modeling of the resolution of a permutation transfer problem with an "objects to 

people" assignment structure, from Bassok, Wu and Olseth (1995). 
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Figure S2. Modeling of the resolution of a permutation transfer problem with a “people to 

objects" assignment structure, from Bassok, Wu and Olseth (1995). 
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Figure S3. Modeling of the resolution of a distributive problem without a structuring element 

from Coquin-Viennot and Moreau (2003). 
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Figure S4. Modeling of the resolution of a distributive problem with a structuring element 

from Coquin-Viennot and Moreau (2003). 
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Figure S5. Modeling of the resolution of a "High Cost" problem from Thevenot & Oakhill 

(2005). This problem could become either a two-digit problem or a three-digit problem 

depending on the values given to x, y and z. 
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Figure S6. Modeling of the resolution of an ordinal problem from Gamo et al., 2010. 
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Figure S7. Modeling of the resolution of a cardinal problem from Gamo et al., 2010. 
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Figure S8. Modeling of the resolution of a "More" problem from Hudson (1983). 
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Figure S9. Modeling of the resolution of a “Won't get” problem from Hudson (1983). 
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Figure S10. Modeling of the resolution of a standard compare problem from De Corte et al. 

(1985). 
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Figure S11. Modeling of the resolution of a reworded compare problem from De Corte et al. 

(1985). 

 


