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When masters of abstraction run into a concrete wall: Experts
failing arithmetic word problems
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Abstract
Can our knowledge about apples, cars, or smurfs hinder our ability to solve mathematical problems involving these entities? We
argue that such daily-life knowledge interferes with arithmetic word problem solving, to the extent that experts can be led to
failure in problems involving trivial mathematical notions. We created problems evoking different aspects of our non-mathe-
matical, general knowledge. They were solvable by one single subtraction involving small quantities, such as 14 – 2 = 12. A first
experiment studied how university-educated adults dealt with seemingly simple arithmetic problems evoking knowledge that
was either congruent or incongruent with the problems’ solving procedure. Results showed that in the latter case, the proportion
of participants incorrectly deeming the problems “unsolvable” increased significantly, as did response times for correct answers.
A second experiment showed that expert mathematicians were also subject to this bias. These results demonstrate that irrelevant
non-mathematical knowledge interferes with the identification of basic, single-step solutions to arithmetic word problems, even
among experts who have supposedly mastered abstract, context-independent reasoning.

Keywords Encoding effects . Mathematical cognition .Mental models . Semantics

Introduction

Is 14 − 2 = 12 always obvious? Most third graders know the
basics of addition and subtraction (Carpenter & Moser,
1984), and solving elementary arithmetic operations is no
big deal from this point onwards. We learn from an early
age that operations such as 14 – 2 = 12 are always valid, no
matter whether one is subtracting apples, cars, or smurfs.
However, our claim is that adults whose mathematical
knowledge is unquestionable, even outstanding, sometimes
fail to solve arithmetic problems involving a single-step so-
lution such as 14 – 2 = 12 when their knowledge about the
entities subtracted interferes with the mathematical structure
of the problem.

This prediction arises from a growing body of literature
suggesting that the daily-life, non-mathematical world knowl-
edge one has about the objects an arithmetic word problem
refers to might influence their mathematical representation of
the problem and their subsequent choice of a solving strategy.
For example, Bassok, Wu, and Olseth (1995) showed that
being trained to solve a permutation problem was not always
helpful to solve analogous problems. The authors demonstrat-
ed that slight, mathematically-irrelevant changes in the seman-
tic relations linking the objects mentioned in the cover stories
(e.g., computers assigned to secretaries vs. secretaries
assigned to computers) led to significant performance differ-
ences. Subsequent research has shown that non-mathematical
semantic information related to the entities described in a
problem influences lay solvers’ performance (Bassok,
Chase, & Martin, 1998; Gros, Sander, & Thibaut, 2016;
Thevenot & Barrouillet, 2015; Verschaffel, De Corte, &
Vierstraete, 1999; Vicente, Orrantia, & Verschaffel, 2007) as
well as strategy choice (Gamo, Sander, & Richard, 2010;
Gros, Thibaut, & Sander, 2017) and transfer (Gros, Thibaut,
& Sander, 2015) on arithmetic word problems. Most of the
available evidence regarding this issue has been collected with
children and non-expert adults on problems that were not
straightforward (e.g., complex permutation problems).
Building on this literature, we propose to go further and show
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that irrelevant aspects of what we call world semantics (the
non-mathematical knowledge about the world that is evoked
by the entities described in a specific problem statement) can
also mislead experts in mathematics on problems involving
basic arithmetic notions, despite them being considered ex-
perts in abstract, context-independent reasoning (Dehaene,
2011). We call this proposal the “world semantics view.”

Despite stemming from the aforementioned literature, the
claim that world semantics could exert such a pervasive influ-
ence and threaten even the highest levels of mathematical
expertise is rather innovative, as it challenges the commonly
held view in the expertise literature regarding experts’ profi-
ciencies. This expertise view notably considers that experts
identify what has been described as the “deep structure” of
the problem (Chi, Feltovich, & Glaser, 1981), its “principle”
(Ross, 1987), its “objective mathematical structure” (Bassok,
2001), or its “problem space” (Newell & Simon, 1972). This
deep structure is independent of the semantics imbued in the
problem statement, and as such it is the foundation of experts’
abstract, context-independent reasoning about the problem.
Indeed, since by definition mathematics is not empirical and
manipulates abstract symbols rather than real-life objects
(Davis, Hersh, & Marchisotto, 2011; Russell, 1903), mathe-
matical experts should ignore irrelevant information associat-
ed with the entities on which numbers and algorithms operate.
They should perceive the deep structure of arithmetic prob-
lems that can be solved by simple subtractions (i.e., involving
small quantities such as 14 − 2), no matter whether they cal-
culate the price of an apple, the height of a smurf, or the speed
of a car. Furthermore, experts are known to show exceptional
performance in domain-related tasks (Chi, 2006), they stand
out in their ability to generate problem solutions (De Groot,
1965), to detect relevant problem features (Lesgold et al.,
1988), to monitor their own comprehension (Chi, 1978), and
to qualitatively analyze the task at hand (Voss, Greene, Post, &
Penner, 1983) (see Chi, 2006 for a review of experts’ profi-
ciencies). These former studies do not predict that the seman-
tics conveyed by the problem statement could interfere with
the experts’ understanding of the problems’ mathematical
structure.

We performed two experiments to show that, contrary to
this expertise view – but in accordance with the world seman-
tics view – arithmetic problems admitting a single-step solu-
tion might pose a challenge to mathematical experts. We pre-
sented participants with a series of isomorphic problems in-
volving two numerical values. Crucially, for each problem, a
solution was provided (a single subtraction between the prob-
lem’s two numerical values), and participants’ task was to
evaluate its validity. By varying the semantic, non-
mathematical information evoked by the problem statements
(e.g., use of an elevator vs. a weighing scale, reference to
marbles being won vs. years passing by, mention of hamburg-
er prices vs. statues’ heights, etc.), we intended to show that

evenmath experts are exposed to a deleterious influence of the
non-mathematical knowledge evoked by the problem
statement.

Our world semantics view predicts that university students
(Study 1) – andmath experts (Study 2) –will more often fail to
recognize the proposed solution when it conflicts with the
non-mathematical knowledge about the world evoked by the
entities featured in the problem statement than when the solu-
tion is consistent with it. Furthermore, it predicts that a
recoding process, akin to re-representation (Davidson &
Sternberg, 2003; Vicente et al., 2007) is necessary when a
problem’s initial encoding leads to a dead end. Indeed, when
the semantic content of a problem statement leads participants
to interpret the situation in a way that is not compatible with
the problem’s solution, then it becomes necessary to build a
new representation of the situation congruent with the solu-
tion. When successfully performed, such a recoding process
should result in longer response times for correct answers
conflicting with the problems’ world semantics.

Study 1

Methods

Participants

We recruited 85 adults (50 women, mean age = 23.35 years,
SD = 7.82) in the Paris region. All had attended university
(mean length of university curriculum = 2.85 years, SD =
1.18), but none majored in mathematics. Considering the
low complexity of the math problems involved, participants’
curriculum was a clear indicator that they possessed the math-
ematical expertise required to solve the problems. Sample size
was determined using uncertainty and publication bias correc-
tion on results from a previous study (Gros et al., 2016), fol-
lowing Anderson, Kelley, and Maxwell’s recommendations
(2017).

Materials

Our materials were inspired by Gamo et al. (2010), who
showed that problems with the same formal mathematical
structure are nevertheless preferentially solved with one of
two available solving strategies, depending on the semantic
content of the problem. Consider the weight problem in
Table 1: this problem can be solved through two strategies.
One is a three-step algorithm consisting of calculating the
weight of each individual dictionary to compute the weight
of the stack of dictionaries Lola is carrying: 14 – 5 = 9; 5 – 2 =
3; 9 + 3 = 12. The other one is a one-step algorithm that
requires understanding that since Lola and Joe carry the same
Spanish dictionary, calculating the weight of each book is
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the Russian dictionary, the weight difference between Joe’s
and Lola’s books is of 2 kg as well: 14 – 2 = 12.

The duration problem in Table 1 has the samemathematical
structure and can be solved using the same solving
procedures. However, Gamo et al. (2010) showed that the
two solving procedures are not randomly distributed across
the two types of problems. Participants favor the three-step
algorithm on problems like the dictionary problem (called
cardinal problems) and the one-step algorithm on the second
type of problems (called ordinal problems). This strategy
using imbalance was our starting point. Gamo et al. (2010)
and Gros et al. (2017) showed that the differences in the world
semantics evoked by the problems resulted in different spon-
taneous encodings of the situations, from which this imbal-
ance originated1 (see Fig. 1 for a description of this effect).
Since cardinal and ordinal problems shared the same structure
featuring the same parts and wholes presented in the same
order with the same numerical values, the imbalance in strat-
egy use could only be attributed to the variations of the se-
mantic content of the problem statements. Additionally, when
considering the correct answers on either algorithm there was
no significant difference in adults’ performance between car-
dinal and ordinal problems, which indicates that the strategy
imbalance was not a matter of problem difficulty (Gros et al.,
2017).

Gros et al. (2017) have shown that most adults encode col-
lection, price, and weight problems as cardinal representations,
whereas they encode duration, distance, and floor problems as

ordinal representations. We modified their problems and re-
moved the value of Part 1 so that the three-step strategy could
not be used (see Table 2). Consequently, the only solution left
was the one-step strategy, which required using the values of
Whole 1 and of the Difference (see Fig. 1). The constructed
materials are available online (https://osf.io/fxgqh/?view_
only=ed1374ef4d204c90a0cb03a30cb0a099). Ordinal
problems were 333.5 characters long on average (SD = 38.
37) and cardinal problems were 304 characters long on
average (SD = 44.94). This length difference was not
statistically significant (t(10) = 1.18, p = .26, paired t-test).
Crucially, for each problem, participants were presented with
the correct one-step solution (e.g. “14 – 2 = 12; Jolene has 12
marbles”). Participants’ task was to decide whether the provid-
ed solution worked, or whether there was no solution to the
problem. Due to the already established imbalance in strategy
use between problems evoking a cardinal encoding and prob-
lems evoking an ordinal encoding (Gamo et al., 2010; Gros
et al., 2017), we assumed that the measure of participants’
ability to use the only remaining strategy on problems evoking
different aspects of world semantics would be an effective
assessment of the robustness of these effects.

The world semantics hypothesis predicts lower perfor-
mances on cardinal than on ordinal problems, even among
experts, because cardinal problems would require a re-
representation of the situation when the only solution avail-
able is the one-step algorithm. By contrast, ordinal problems
should be easier to solve because participants’ spontaneous
encoding facilitates the use of the one-step algorithm. Since
university-educated adults can be considered experts in solv-
ing subtractions such as 14 2 = 12, and since the deep struc-
ture of a problem is identical regardless of the objects in-
volved, this prediction could not be made without the world
semantics view, especially when participants only need to
check the validity of the proposed solution. Additionally, we
predict that recoding a situation initially encoded as a combi-
nation of subsets (such as a cardinal encoding) into a repre-
sentation in terms of states and transitions between states
(such as an ordinal encoding) is a costly process, requiring a
longer response time. Although our hypotheses only regard
solvable problems, we also included unsolvable distractors in
the materials, so that the correct answer would not always be
“This problem can be solved.” Among those distractors the

Table 1 Two isomorphic problems sharing the same mathematical structure but evoking different aspects of our knowledge about the world

Weight problem Duration problem

Joe takes a Russian dictionary weighing 5 kg
He also takes a Spanish dictionary
In total, he is carrying 14 kg of books
Lola takes Joe's Spanish dictionary and a German dictionary
The German dictionary weighs 2 kg less than the Russian dictionary
How many kilograms of books is Lola carrying?

Tom took painting classes for 5 years
He started taking painting classes at a specific age
He stopped taking the classes at the age of 14 years
Lucy started taking painting classes at the same age as Tom
She took classes for 2 years less than him
How old was Lucy when she stopped taking painting classes?

1 Although the explanation of this effect is not the purpose of the present
paper, the authors suggest that because our world knowledge about dictionar-
ies says we can stack them with no specific order, they evoke a representation
of the total as a combination of subsets, which they call a cardinal representa-
tion. A similar reasoning can be held for weights or prices defined as object
properties (Gros et al., 2017). On the other hand, using the one-step algorithm
requires participants to build a re-representation of the problem that is not
based on a “combination of subsets,” which makes computing the weight of
the Spanish dictionary unnecessary. By contrast, some problems seem to em-
phasize the ordinal nature of the values featured and afford a representation of
the numerical values on a continuous axis. For example, we spontaneously
encode durations on a timeline, which makes it easier for school children and
lay adults to notice that the numerical difference between the two distinct parts
is equal to the difference between the two totals (Gamo et al., 2010). A similar
reasoning can be held for height or floor problems (Gros et al., 2017). Thus,
using the one-step algorithm is more straightforward for ordinal than for car-
dinal problems (see Fig. 1)
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value ofWhole 1 was removed instead of the value of Part 1,
which rendered the problems unsolvable with either
algorithm.

Procedure

Participants answered the questions using three keyboard
keys on a 17-in. laptop. Instructions stated that “Some of
the problems can be solved using the values provided,
while other problems cannot be solved with the available
information. Your task is to tell apart problems that can be
solved from problems that cannot. Answer as quickly as
you can, although being correct is more important than
being fast.”

Participants were presented with six target problems that
were only solvable with the one-step algorithm: three cardinal
and three ordinal problems. An equal number of distractors

was introduced to fulfill subjects’ expectations regarding the
uniform distribution of yes/no answers. Problem order, cover
stories, and numerical values were randomized between par-
ticipants. The value ofWhole 1was between 11 and 15,Whole
2 between 5 and 9, and the Difference was either 2 or 3.

We used a segmented self-presentation procedure
displaying the text line by line on the screen when
participants pressed the spacebar. Below, a question ap-
peared: “Given the data provided, is it possible to find
the solution?” followed by two possible choices: “(A)
No, there is not enough information to find the solu-
tion.” “(B) Yes, and the following solution is correct:”
(followed by, in the case of the marble problem: “14 –
2 = 12. Lucy has 12 marbles in total”). A solution was
proposed for each problem, and it was up to the partic-
ipants to assess whether it was valid or whether the
problem was unsolvable.

Fig. 1 Implementation of the mathematical structure with ordinal versus cardinal quantities, leading to different problem statements, representations, and
strategy use
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Results

Data collected for both studies are available online (https://osf.
io/fxgqh/?view_only=ed1374ef4d204c90a0cb03a30cb0a099).
The dependent variable was the proportion of correct answers
for solvable problems (see Fig. 2). Becausemultiple binary data
points were recorded in a repeated design (each participant
provided a binary answer to three ordinal and three cardinal
solvable problems), the use of repeated measures ANOVA
was deemed inappropriate and replaced by a mixed model
(Hector, 2015). We used a generalized linear mixed model with
a binary distribution, with the cardinal versus ordinal semantic

nature of the problems as a fixed factor, and participants as a
random effect. In line with our hypothesis, lay adults performed
significantly better on ordinal (81.18%) than on cardinal prob-
lems (46.67%); z = 7.84, p < .001, R2

GLMM(c) = .29.2

Additionally, looking at individuals’ response patterns showed
us that 65.9% of the participants made fewer mistakes on ordi-
nal than on cardinal problems, 11.8% made no mistakes at all,
15.3% made the same number of mistakes in cardinal and in
ordinal problems, and only 7.1% made more mistakes on ordi-
nal than on cardinal problems.

Further analyses were conducted on participants’ response
times (RTs) on solvable problems that had been successfully
identified as such by the participants (see Fig. 3). Because the
number of correct answers could vary from 0 to 6 for each
participant, the number of RT data points varied accordingly,
and the use of repeated-measures ANOVAwas again deemed
inappropriate (Hector, 2015). A linear mixed model with sub-
jects as a random effect and semantic nature of the problems as
a fixed factor showed that participants took more time to cor-
rectly solve cardinal (M = 34.05, SD = 18.78) than ordinal
problems (M = 26.85, SD = 12.49), χ2 (1) = 29.14, p < .001,
R2

LMM(c) = .44. Additionally, we studied the participants’ in-
dividual response patterns to identify whether different partic-
ipant profiles existed. For each participant, we computed the
difference between their mean RTs on correctly solved cardi-
nal and ordinal problems (see Fig. 4) and we performed
Hartigan’s dip test for unimodality versus multimodality on
the resulting distribution (Hartigan & Hartigan, 1985). The

Fig. 2 Distribution of adults’ answers. *** p < .001

2 Conditional R2 are reported in lieu of η2 for the mixed models in this paper,
since no satisfactory method is currently available to estimate effect sizes on
mixed models (Westfall, Kenny, & Judd, 2014).

Table 2 Example of target problems used in the study. Changes introduced from Gros el al.’s (2017) problem statements are italicized in the table for
the sake of clarity, but they were not made apparent in the experiment. Translated from French

Cardinal target problems Ordinal target problems

Paul has a certain amount of red marbles
He also has blue marbles
In total, Paul has 14 marbles
Jolene has as many blue marbles as Paul, and some green marbles
She has two green marbles less than Paul has red marbles
How many marbles does Jolene have?

Sofia travelled for a certain time
Her trip started during the day
Sofia arrived at 14 h
Fred left at the same time as Sofia
Fred's trip lasted 2 h less than Sofia's
What time was it when Fred arrived?

In the store, Anthony wants to buy a ruler costing a certain price
He also wants a notebook
In total, that will cost him 14 dollars
Julie wants to buy the same notebook as Anthony, and an eraser
The eraser costs 2 dollars less than the ruler
How much will Julie have to pay?

Slouchy Smurf is a certain height
He climbs on a Smurf table
He now attains the height of 14 cm
Grouchy Smurf climbs on the same table as Slouchy Smurf
Grouchy Smurf is 2 cm shorter than Slouchy Smurf
What height does Grouchy Smurf attain when he climbs on the table?

Joe takes a Russian dictionary weighing a certain weight
He also takes a Spanish dictionary
In total, he is carrying 14 kg of books
Lola takes Joe's Spanish dictionary and a German dictionary
The German dictionary weighs 2 kg less than the Russian dictionary
How many kilograms of books is Lola carrying?

Katherine took the elevator and went up a certain number of floors
She left from the floor where the gym is
She arrived to the 14th floor
Yohan also took the elevator from the floor where the gym is
He went up 2 floors less than Katherine
What floor did Yohan arrive to?
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analysis failed to reject the null hypothesis that participants’
responses came from a unimodal distribution (D = .028, p =
.94), thus providing no empirical ground to assume that the
distribution of response times was multimodal.

Discussion

The difference in performance between cardinal and ordinal
problems indicates that despite their expertise regarding basic
subtractions, the adults’ answers were significantly influenced
by the semantic content of the problem statements. This con-
firms previous results obtained with the “complete” version of

the problems that could be solved either with the three-step
algorithm or with the one-step algorithm (Gamo et al., 2010;
Gros et al., 2017). Here, we showed that the strategy imbal-
ance observed in these previous studies was not an effect of
mere preference for one strategy over another, but an actual
impossibility to identify the relevance of the one-step algo-
rithm on cardinal problems, as attested by the fact that on these
problemsmore than half of the participants rejected a perfectly
valid solution, despite only needing to check its validity.
Regarding RTs, the fact that correct answers took more time
on cardinal problems suggests that recognizing the solution to
a problem evoking aspects of world semantics seemingly in-
compatible with the solution required an extra processing step.
This is also supported by the fact that there was no significant
difference in length between cardinal and ordinal problems.
This is in line with the recoding process we predicted. These
results show that the semantic content of a problem can pre-
vent university-educated adults from recognizing a simple
subtraction as the solution to a problem whose mathematical
structure is undoubtedly within their level of expertise. We
designed a second study to identify whether such effects
would remain with expert mathematicians, known to be espe-
cially accustomed to abstract reasoning.

Study 2

Methods

Participants

We recruited 25 experts (two women, mean age = 23.59 years,
SD = 2.81) who had successfully passed the entrance exam of
the Science section at the École Normale Supérieure (ENS
Ulm) in Paris. This exam is considered as the most demanding

Fig. 4 Distribution of individual differences between cardinal response
time (RT) and ordinal RT on correctly solved problems. Bins below the
zero value indicate participants whose ordinal RT were higher than their

cardinal RT on average, whereas bins above zero indicate participants
whose ordinal RT were lower than their cardinal RT on average

Fig. 3 Violin plot of adults’ response times (RTs) on correctly identified
solvable problems. Middle bars indicate mean RTs; upper and lower bars
indicate margins of .95 confidence intervals. *** p < .001
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one in France, with an entrance rate of 2.02% among
university-educated participants (“SCEI Statistics”, 2017).
The ENS ranked second in Times Higher Education’s World
University Rankings 2016–2017 for Best Small University
(Bhardwa, 2017). Although the population sample was small-
er than in the first study due to the number of graduates from
École Normale Supérieure being limited, sample size was
deemed sufficient using uncertainty and publication bias cor-
rection on results from a previous study (Gros et al., 2016),
following Anderson et al.’s recommendations (2017).

Materials and procedure

Materials and procedure were identical to that of Study 1.

Results

As in Study 1, we analyzed the proportion of correct answers
on solvable problems (see Fig. 5) with a generalized linear
mixed model. Experts had a higher success rate on ordinal
(94.67%) than on cardinal problems (76.00%); z = 2.99, p =
.0028, R2

GLMM(c) = .25. Additionally, a comparison with
Study 1 showed that Study 2 experts’ performance (85.33%)
was significantly higher than Study 1 adults’ performance
(63.92%), which was another confirmation of their outstand-
ing expertise in mathematics; z = 4.49, p < .001, R2GLMM(c) =
.33. Looking at individuals’ response patterns also indicated
that 52.0% of the participants made fewer mistakes on ordinal
than on cardinal problems, 36.0% made no mistakes at all,
4.0% (one participant) made the same number of mistakes in

cardinal and in ordinal problems, and only 8.0% made more
mistakes on ordinal than on cardinal problems.

Analyses were conducted on participants’ RTs for correctly
identified solvable problems (see Fig. 6). As in Study 1, we
used a linear mixed model that showed that experts took sig-
nificantly more time to correctly solve cardinal problems (M =
26.58, SD = 14.03) than ordinal problems (M = 19.45, SD =
8.18), as predicted by our world semantics hypothesis; χ2 (1) =
18.65, p < .001, R2LMM(c) = .37. Unsurprisingly, experts’ RTs
on correct answers were significantly shorter (M = 22.63, SD =
11.68) than in Study 1 (M = 29.50, SD = 15.48); χ2 (1) = 7.68,
p = .0056, R2LMM(c) = .46. As in Study 1, the computation of
individual differences in RTs between cardinal and ordinal
problems showed no sign of multimodality (see Fig. 7), and
Hartigan’s dip test for unimodality versus multimodality failed
to reject the null hypothesis of unimodality (D = .048, p = .96).

Discussion

Despite their superior performances, high-level mathemati-
cians were still significantly influenced by world semantics.
Their performance dropped significantly on cardinal prob-
lems, and correct answers required more time on average on
cardinal than on ordinal problems. Therefore, despite their
proficiency in abstract mathematical reasoning, expert mathe-
maticians failed to disregard irrelevant non-mathematical in-
formation when solving the problems, as hypothesized.

Fig. 6 Violin plot of experts’ response times (RTs) on correctly identified
solvable problems. Middle bars indicate mean RTs; upper and lower bars
indicate margins of .95 confidence intervals. *** p < .001Fig. 5 Distribution of experts’ answers. ** p < .01
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General discussion

In this paper, we sought to demonstrate that irrelevant aspects
of our non-mathematical knowledge evoked by the semantic
content of a problem statement can lead both adults and math-
ematics experts to encode the problem in such a way that they
would erroneously consider valid solutions as incorrect.
Indeed, participants failed to identify the solvability of sub-
traction problems admitting a single-step solution significant-
ly more often when the world semantics they evoked conflict-
ed with the relevant mathematical information, than when the
two were congruent. Additionally, correct answers took more
time in the conflicting than in the congruent case for both
populations, suggesting that the initial spontaneous represen-
tation triggered by the semantic content of the problem state-
ment had to be recoded. Although they achieved higher per-
formances overall, high-level experts still rejected several per-
fectly valid solutions: they fell prey to robust effects of world
semantics that current theories of expertise do not account for.

There is a much larger body of literature describing in what
terms experts excel in their field than there are studies reveal-
ing experts’ shortcomings. However, as Chi (2006, p. 23)
stressed, “it is equally important to understand how experts
fail,” which was one of the goals of this paper. A few limita-
tions have already been shown to occasionally affect experts’
excellence (see Chi, 2006, for a review). For instance, experts’
proficiencies are limited to their domain of expertise (Ericsson
& Lehmann, 1996) and they lack adaptability to irregular sit-
uations whose structures differ from what they expect
(Sternberg & Frensch, 1992). They have even been shown to
gloss over details (Voss, Vesonder, & Spilich, 1980), which
paradoxically suggests that they should be good at ignoring
surface properties unrelated to the formal structure of the prob-
lems. More recent works have even hinted at biases slowing
down experts within their own domain of expertise (Goldberg
& Thompson-Schill, 2009; Obersteiner, Van Dooren, Van
Hoof, & Verschaffel, 2013). However, we believe none of
these accounts would have predicted our results, since they

do not explain howmathematically irrelevant contextual infor-
mation may significantly hinder experts’ abstract reasoning on
problems within their very field of expertise, to the extent that
they would not identify the validity of the solution handed out
to them. Here, mathematical experts failed to do what they are
good at: engaging in abstract reasoning on concrete entities to
find a single-step solution. Our results suggest that whenmath-
ematical knowledge and world semantics conflict with one
another, masters of abstraction can run into a concrete wall.

This effect is understandable since world semantics and
mathematical knowledge often (although not always) naturally
align with each other, which explains how some superficial
cues are highly correlated with deeper principles (Bassok,
Pedigo, &Oskarsson, 2008; Blessing&Ross, 1996). It follows
that solvers rely on those cues at all levels and tend to make
mistakes when world andmathematical semantics do not align.
Overall, it seems that these effects of semantic (in)congruence
between world semantics and mathematical knowledge have
been greatly undermined on the account of mathematics being
an inherently abstract domain in which rules and concepts are
valid independently from the objects they are applied to. Our
results show how prevalent the influence of world knowledge
is on arithmetic reasoning, even among the individuals who
should be the least subject to it. This suggests that experts will
never be completely freed from the influence of world knowl-
edge; having an outstanding level inmathematics is not enough
to systematically perceive that 14 – 2 = 12.
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