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Abstract. We propose a method for selecting pre-symptomatic subjects
likely to have amyloid plaques in the brain, based on the automatic
analysis of neuropsychological and MRI data and using a cross-validated
binary classifier. By avoiding systematic PET scan for selecting subjects,
it reduces the cost of forming cohorts of subjects with amyloid plaques
for clinical trials, by scanning fewer subjects but increasing the number
of recruitments. We validate our method on three cohorts of subjects at
different disease stages, and compare the performance of six classifiers,
showing that the random forest yields good results more consistently,
and that the method generalizes well when tested on an unseen data set.

1 Introduction

One of the lesions defining Alzheimer’s disease (AD) is the formation of amyloid
plaques in the brain. A commonly accepted hypothesis is that this plaque for-
mation is the starting point that triggers a cascade of events leading to neuronal
loss, cognitive decline and then dementia[9]. Those plaques appear very early
in the disease course, often way before any signs of cognitive decline and diag-
nosis [5, 12]. They are the consequence of the aggregation of beta-amyloid (Aβ)
peptides, and together with neurofibrillary tangles, they are thought to cause
the death of neurons, hence being the potential cause of cognitive decline.

Consequently, amyloid plaques are targeted by several molecules at differ-
ent stages of their formation, with the aim that preventing their formation or
clearing them would stop the process resulting in AD. Several of those poten-
tial drugs, such as solanezumab and bapineuzumab have already been tested on
mild-to-moderate AD subjects and did not prove to slow down the progression
of the symptoms of AD [4]. A possible explanation for these failures is that the
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Fig. 1: Current (left) and proposed (right) processes for Aβ+ subjects selection

treatments have been tested on subjects too late in the disease course, and for
some of the trials on subjects without confirmation of amyloidosis. Drugs may
stop the formation of amyloid plaques or clear them effectively, but they cannot
repair the damage that has already been caused by the plaques. An hypothesis
is that applying those treatments specifically on pre-symptomatic subjects with
amyloidosis would make them more effective.

Testing these molecules at the preclinical stage raises the problem of re-
cruiting pre-symptomatic subjects with amyloid plaques [15]. Positron emission
tomography (PET) imaging with amyloid ligands is, together with lumbar punc-
ture, the most widely used techniques to assess amyloid plaques presence in vivo.
However, the prevalence of Aβ positive (Aβ+) subjects among asymptomatic el-
derly people is rather low: about 30 % [2], resulting in 333 subjects to recruit and
scan to get 100 Aβ+ subjects. A PET scan is however quite costly, about 1,000e
in Europe, and 5,000$ in the USA, so creating cohorts of pre-symptomatic Aβ+
subjects amounts to be very expensive. To ease the economic burden, we pro-
pose here to introduce a pre-screening phase to select subjects with higher risk
of being Aβ+ than in the general population, and perform a confirmatory PET
scan to those subjects only. We propose to predict the presence of amyloidosis in
subjects by the automatic analysis of their neuropsychological assessments and
structural imaging data, which are exams that are less expensive. We propose
to use machine learning algorithms to find the patterns in these data that best
predict the presence of amyloid plaques in the brain.

Methods to automatically predict amyloidosis from socio-demographic, ge-
netic and cognitive variables have been proposed in [13] and [11]. In particular,
they studied how univariate methods perform compared with multivariate ones.
The threshold of the logistic regression in [13] was set a priori, and not opti-
mized. The approach in [11] aimed to maximize the Positive Predictive Value
(PPV). This value might be arbitrarily good by using a more and more stringent
detection threshold, but that implies that more and more subjects need to be
recruited for a given target number of Aβ+ subjects, as many positive subjects
are discarded as false negatives. To better reflect this trade-off, we propose to
translate the specificity and sensitivity of a classifier into a number of subjects
to be recruited (R) and a number of subjects to be scanned (S), as shown Fig. 1.
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Each value of R and S corresponds to a given cost for the constitution of the
cohort. The aim of our approach is to find the threshold minimizing this cost.

In this paper, we will benchmark an array of cross-validated machine learning
algorithms for the prediction of amyloidosis from several feature sets extracted
from clinical and structural imaging data. We will validate these algorithms
on three different cohorts with subjects at various disease stages. The hyper-
parameters will be tuned by maximizing the area under the ROC curve (AUC).
The score threshold will be chosen so as to minimize the cost.

2 Materials and Methods

2.1 Validation cohorts

The method is validated on 3 cohorts: INSIGHT, ADNI-CN and ADNI-MCI.
INSIGHT is a monocentric French study including asymptomatic subjects with
a subjective memory complaint (SMC). 318 subjects have an AV45 PET scan
and hence an Aβ standardized uptake value ratio (SUVr) for baseline, among
which 88 (27.7%) are Aβ+.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multicentric
longitudinal study. We use the cognitively normal subjects (ADNI-CN) and the
subjects with mild cognitive impairments (ADNI-CN) that have an Aβ status
assessed by AV45 PET scan or CSF biomarkers in the absence of PET scan. The
baseline visit of the subjects who stay Aβ+ or Aβ- for all visits is used. 431 CN
subjects (37.6% of Aβ+) and 596 MCI subjects (62.9% of Aβ+) are available.

2.2 Input Features

Socio-demographic (age, gender, education), genetic (APOE) and cognitive fea-
tures are used as inputs. For ADNI, the Alzheimer’s Disease Assessment Scale
cognitive sub-scale (ADAScog) is divided into memory, language, concentration
and praxis, and for INSIGHT SMC questionnaires and cognitive tests (targeting
memory, executive functions, behavior or overall cognitive skills) are used. MRI
features are also used and compared with cognitive assessments in terms of pre-
diction power. Cortical thicknesses averaged on 72 regions are extracted using
FreeSurfer and divided by the total cortical thickness. The hippocampal volume
is computed using FreeSurfer for ADNI and SACHA [3] for INSIGHT.

2.3 Algorithms

The classification is made using different algorithms in order to compare their
performance. Hyper-parameters are tuned using cross-validation to maximize
the AUC. The used algorithms are: random forest [1] (validation of the number
and depth of the trees), regularized logistic regression [8] (validation of the reg-
ularization parameter), linear support vector machine [14] (SVM) (validation of
the penalty parameter), additive logistic regression [7] (AdaLogReg) (validation
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Fig. 2: Example of ROC curve (left), S vs R curve (middle) and corresponding
cost curve (right)

of the number and depth of the learners and of the learning rate for shrinkage),
and adaptive boosting [6] (AdaBoost) (same hyper-parameters as AdaLogReg).

The data set is randomly split into a training (70%) and a test set (30%) 50
times, and a 5-fold validation is performed on the training set to automatically
choose the algorithm hyper-parameters. All algorithms are trained on the whole
training set, and their performance is evaluated on the test set. The performance
mean and standard deviation (std) are computed and used to perform t-tests.

2.4 Performance Measures

The AUC is used to evaluate the overall performance of the methods and to tune
the hyper-parameters. The maximum balanced accuracy (average of sensitivity
and specificity, noted BAcc), which corresponds to a specific point on the ROC
curve, is also used. The last measure is the minimal cost for recruiting 100 ∗ ω
Aβ+ subjects, where ω is the proportion of positive subjects in the data set. In
order to compute this cost, the ROC curve is computed (Fig 2, left), then the
number of subjects that have to be recruited (R) and the number of subjects
that have to be scanned (S) are computed for each point on the ROC curve
(Fig 2, middle):

S = 100 ∗ ω ∗ TP+ FP
TP

(1) R = 100 ∗ ω ∗ N
TP

(2)

where TP stands for number of True Positives, FP for number of False Positives
and N for number of tested subjects. The corresponding cost is computed at
each point (Fig 2, right). The point with the minimal cost is kept, and the
corresponding cost is used as a performance measure. We made the hypothesis
that recruiting a subject (with cognitive scores and genetic information) costs
100e, doing an MRI costs 400e and a PET scan 1,000e. As a comparison,
recruiting 100 ∗ ω Aβ+ subjects doing a confirmatory PET scan for all subjects
would correspond to a cost of 110,000e (100 recruitments and PET scans).
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Table 1: Benchmark of algorithms, given in the form: average performance (std)

Data set Random
Forest

Logistic
regression SVM AdaLogReg AdaBoost

A
U
C INSIGHT 67.5 (5.5) 62.7 (6.1) 62.0 (5.8) 67.5 (5.7) 67.2 (6.9)

ADNI-CN 69.1 (4.0) 69.5 (4.1) 67.3 (5.0) 66.4 (4.6) 66.5 (5.1)
ADNI-MCI 83.8 (2.8) 82.5 (2.6) 82.4 (2.7) 82.6 (2.8) 83.1 (3.3)

B
A
cc

INSIGHT 63.9 (1.5) 60.1 (1.6) 59.6 (1.4) 62.3 (1.5) 62.3 (1.3)
ADNI-CN 63.3 (1.0) 63.8 (1.1) 62.3 (0.9) 61.6 (1.3) 61.4 (1.3)
ADNI-MCI 74.5 (0.9) 74.2 (0.8) 74.5 (0.8) 73.6 (0.8) 73.4 (1.0)

C
os
t
(e

) INSIGHT 80,697
(15,900)

91,866
(15,811)

96,813
(13,147)

85,134
(16,137)

85,118
(18,944)

ADNI-CN 88,206
(86,88)

84,833
(7,694)

88,404
(9,049)

93,231
(8,216)

92,921
(9,192)

ADNI-MCI 85,673
(30,56)

86,460
(2,522)

86,436
(2,642)

86,056
(2,566)

86,269
(3,485)
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Fig. 3: Performance variations depending on the number of kept lasso variables

3 Experiments and Results

3.1 Algorithm benchmark

An algorithm benchmark (using socio-demographic, genetic and cognitive fea-
tures) is presented in Table 1. There is no algorithm that consistently outper-
forms the others for all criterion. However, if a choice has to be made, the random
forest is consistently among the best algorithms for all measures and all data
sets. Its performances are the best for INSIGHT and ADNI-MCI, and are slightly
below the ones of the logistic regression for the ADNI-CN. Using a random forest
leads to a significant decrease in the cost of recruiting 100 ∗ω Aβ+ compared to
the initial cost of 110,000e (p<0.001).

3.2 Feature selection

Using all the INSIGHT available features (117 features including 112 cogni-
tive ones) for prediction gives an AUC of 56.2% (±7.5). Dimension reduction is
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Table 2: Results using MRI variables, socio-demographic and genetic information
on different data sets

Data set AUC in %
(std)

BAcc in %
(std) cost in e (std)

Trained and tested on INSIGHT 61.9 (6.5) 59.3 (1.5) 14,6147 (4,975)
Trained on ADNI-CN, tested on

INSIGHT 62 (6.6) 58 (1.7) 14,5989 (5,112)

Trained on ADNI-CN, tested on
INSIGHT (all samples) 66.1 (3.6) 62.5 (1.1) 14,5896 (2,663)

Trained and tested on [INSIGHT
ADNI-CN] 61.3 (6.6) 58.5 (1.5) 14,5642 (3,897)

Trained and tested on [INSIGHT
ADNI-CN] (all samples) 66.7 (3.7) 62.3 (1.0) 14,6613 (5,859)

therefore considered, comparing several methods. Principal Component Analysis
(PCA) and Independent Component Analysis (ICA) using fastICA[10] are first
considered with a variable number of selected dimensions, but both give less than
52% of AUC. Alternatively, Lasso feature selection is performed, using a linear
regression followed by a random forest and keeping from 5 up to 60 features (Fig.
3). The best results, obtained on 15 features, correspond to an AUC of 64.3%
(±5.2), which is significantly better than using all features (p<0.001). Another
strategy is forming aggregates for each cognitive test using expert knowledge on
which test variables are most likely to be a marker of AD. 26 cognitive summary
variables are constructed this way, and using them in place of the 112 original
cognitive features gives an AUC of 67.5% (±5.5), which is significantly better
(p<0.005) than the performance reached using automatic methods.

3.3 Use of MRI

Using socio-demographic, genetic and cognitive features yields an AUC of 67.5%
(±5.5) on INSIGHT (Table 1, column 1). Using MRI instead of cognitive features
leads to a decrease in AUC (Table 2 line 1: 61.9 % ±6.5, p<0.001). Using both
results in a non-significant increase in AUC (68.8 ±4.4, p>0.1), and in a cost
increase, as it implies to do an MRI on all potential subjects. The performance
vs cost ratio is therefore better without MRI.

3.4 Generalization on an independent cohort

INSIGHT and ADNI are diferent databases, as INSIGHT is a monocentric study
focused on SMC, and ADNI is multicentric with different inclusion criterion
and goals. The hippocampal volumes have also been extracted using different
softwares. In order to see if the proposed method could generalize well to other
data sets, it is trained on ADNI-CN and tested on INSIGHT, as they correspond
to the most similar subject profiles. The socio-demographic, genetic and MRI
variables are used, and a lasso selection of 12 features is performed on the MRI
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variables. In order to have a fair comparison, training and test set are created
with the same size as the training and test data sets coming from INSIGHT,
by randomly selecting 318 ∗ 0.7 = 223 subjects from ADNI-CN for the training
set and 318 ∗ 0.3 = 95 from INSIGHT for the test set. This sampling and the
classification are performed 50 times in order to get an average performance.
The performances obtained by learning on either INSIGHT alone (Table 2 line
1) or ADNI-CN (Table 2 line 2) are very similar, which means the proposed
method is likely to give similar results if applied on a new data set of CN elderly
subjects.

3.5 Pooling data sets

A new data set is created by pooling subjects from ADNI-CN and INSIGHT,
while keeping the same total cohort size as in INSIGHT. The method gives
similar performances when validated on this pooled data set or on INSIGHT
(Table 2, lines 1 and 4), which shows that the heterogeneity of pooled data sets
does not alter the classification performances.

3.6 Effect of sample size

When the classifier is trained and tested on INSIGHT, 318∗0.7 = 223 subjects are
used for training. The training set can contain up to 431 subjects when training
on ADNI and testing on INSIGHT, and 524 subjects when using the pooled
data set, which is respectively 2.30 and 1.86 times larger. We can therefore train
the method on larger and larger data sets, keeping the same proportion between
the training and the test set (70%-30%) for comparison. The results, reported in
Table 2 lines 3 and 5, show a significant increase in the AUC (p<0.001) when the
size of the data set increases, which comforts the need to create large databases,
or pool existing databases, to create more accurate medical models.

4 Conclusion

We proposed a method for creating cohorts of Aβ+ pre-symptomatic subjects,
by building a classifier optimized to minimize cohort creation costs. The pro-
posed method identifies in a pre-screening phase a sub-set of subjects with a
much higher prevalence of Aβ+ cases. We benchmarked cross-validated algo-
rithms and showed that the random forest consistently yields good results. We
tested our method on 3 data sets and showed that it always results in a sig-
nificant cost decrease for creating such cohorts. We showed that the method
generalizes well when trained on a cohort and tested on an independent one,
therefore showing its potential for being used in real clinical environment with
heterogeneous procedures for subject selection, data acquisition and processing.
The best costs are achieved by using socio-demographic, genetic and cognitive
features chosen using expert knowledge. Using MRI features increases the over-
all costs, but the performances could be increased by extracting more complex
features, or by using a priori knowledge for selecting relevant variables.
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