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Abstract— This paper presents a 4×4 logarithmic spike-timing
encoding scheme used to translate the output of an integrated
tin oxide gas sensor array into spike sequence, which is exploited
to perform gas recognition. Hydrogen, Ethanol and Carbon
monoxide were used to characterize the gas sensor array. The
collected data were then used to test the proposed circuit for
spike encoding and gas recognition. Simulation results illustrate
that a particular analyte gas generates a unique spike pattern
with certain spike ordering sequence, which is independent of
the gas concentration. This unique spike sequence can thus be
used to recognize different gases. In addition, the concentration
information can also be extracted from the time-to-the-first
spike in the sequence making it possible to perform not only
gas/odor recognition but quantification as well.
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I. INTRODUCTION

B IOLOGICAL neurons communicate using short and sud-
den increases in their membrane voltage, which are

more commonly known as action potentials or spikes. Recent
research has shown that neurons encode information in spikes
not only with firing frequency, but also more effectively with
precise timing of single spikes [1]. Spike timing seems to
be the basis for some neural computations, such as auditory
neurons in cochlear ganglion and auditory brain system nu-
clei [2], ganglion cells in retina [3] and cells of rat barrel
cortex [4]. Stimuli with temporal structures can thus drive
different neurons to spike as spatiotemporal codes for such
stimuli. Temporally stable stimuli can also be transformed
into spatiotemporal codes. For instance, different odors evolve
particular spatiotemporal spikes of the projection cells in the
locust antennal lobe [5]. Such spatiotemporal spike patterns
from a population of neurons can be simply encoded as rank
orders [6] with rapid and robust processing, where only one
spike per neuron is used and the interconnections between
individual neurons are not needed. The generated spike trains
can be recognized using neural networks or state machines in
digital systems [7].

Recent electrophysiological recordings in the mouse olfac-
tory bulbs have shown that the phase of the firing of a principal
neuron relative to the beginning of each respiratory cycle
reflects input intensity [8]. In addition, these experimental
results and theoretical work reported in [1] show an approxi-
mate logarithmic relationship between firing latency and odor

intensity. In this paper, we propose an integrate-and-fire type
of neuron [9], which can convert the outputs of a tin oxide
gas sensor into logarithmic spike timings. A 4×4 logarithmic
spike-timing encoding circuit is designed and simulated with
the experimentally obtained data from an integrated tin oxide
gas sensor array. The sensor array consists of 4×4 gas sensors
with micro-hotplate (MHP) structures using surface micro-
machining process suitable for large dimension integrated
arrays [10], [11], [12].

The remainder of the paper is organized as follows. Section
II describes the principle and the characterization of the gas
sensor array. Section III reports the gas recognition algorithm
and the design of the encoding circuit. Section IV illustrates
the simulation results while section V concludes the paper.

II. SENSOR ARRAY CHARACTERIZATION

The monolithic 4×4 tin oxide gas sensor array was designed
and fabricated using our in-house 5 µm 1-metal, 1-poly CMOS
process. The top view of the fabricated sensor element with
the micro heater and the electrodes is shown in Figure 1.
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Fig. 1. The SEM picture of the sensor element.

The MHP is at the center of the sensor element and has a
dimension of 190×190 µm2. A 2.8 µm air gap between the
hotplate membrane and the SiO2 underneath the membrane is
formed by etching a sacrificial polysilicon layer. The SnO2

sensing film is deposited onto the MHP using a sputtering
method. The sensor signal is measured from the resistance
variation across the two Pt electrodes. Different post-treatment
combinations were performed on the sensors within the array,
including metal catalysts (Pt, Pd and Au) in 3 columns and
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ion implantations (B, P and H) in 3 rows, which results in a
response variation across the 16 sensors. The fabricated gas
sensor array was characterized using 3 different analyte gases:
Hydrogen, Ethanol and Carbon monoxide. All the tests were
done at an operating temperature of 300 oC. The sensitivity is
used as the extracted feature, which is defined as Rs

R0
, where

R0 and Rs represent the baseline resistance and the resistance
when the sensor is exposed to analyte gases, respectively. R0 is
measured when the sensor is exposed to dry air. For relatively
high concentrations, the sensitivity of the sensors to different
gases is described in Eq. (1) and (2).

(Rs)ij

(R0)ij
= αijC

rij

j , j = 1; (1)

(Rs)ij

(R0)ij
= αije

rij ·Cj , j = 2, 3. (2)

Where i (equals to 1 - 16) represents the ith sensor in
the sensor array and j (equals to 1, 2 or 3) represents the
tested gases namely: Hydrogen, Ethanol and Carbon monox-
ide, respectively. C is the gas concentration. Besides a power
law [13] response to Hydrogen, the sensor array shows an
exponential law relationship to Ethanol and Carbon monoxide.
The two parameters α and r are coefficients which can be
extracted by fitting the experimental curves of the sensor’s
outputs. A new parameter a is defined as aij = rij

min(rij)
, which

will be used in the logarithmic spike-timing circuits, where
min(rij) is the minimum over i, hence for a fixed j (given
gas), min(rij) equals to the smallest rij among the 16 sensors.
By measuring the sensitivity at different gas concentrations,
the coefficient rij and αij can be calculated from the fitting
of the sensitivity-to-concentration curves using Eq. (1) and
(2). The baseline resistance R0 for different sensors and aij

for different type of gases are listed in Table I.

TABLE I

GAS SENSOR ARRAY CHARACTERIZATION RESULT. THE TOP

QUADRANT OF THE TABLE SHOWS THE BASELINE RESISTANCE

FOR EACH SENSOR WITHIN THE ARRAY. THE REMAINING THREE

QUADRANTS REPRESENT THE aij FOR EACH TESTED GASES.

R0 (KΩ) Col1 Col2 Col3 Col4
Row1 22.3 240 26.95 17.08
Row2 24.94 117.88 16.81 13.37
Row3 22.61 233.9 16.59 18.14
Row4 23.47 155.02 29.37 19.85

ai1 (Hydrogen) Col1 Col2 Col3 Col4
Row1 1.001 2.506 2.338 1.658
Row2 1.000 1.641 2.220 1.600
Row3 1.193 2.506 2.475 1.847
Row4 1.225 1.961 2.149 1.886

ai2 (Ethanol) Col1 Col2 Col3 Col4
Row1 1.558 6.674 1.139 1.000
Row2 1.302 6.233 1.000 1.093
Row3 2.535 6.674 1.116 1.209
Row4 2.651 6.488 1.116 1.279

ai3 (CO) Col1 Col2 Col3 Col4
Row1 1.000 2.778 2.111 1.667
Row2 1.444 2.055 1.389 1.555
Row3 1.278 2.778 1.389 1.778
Row4 1.722 2.389 2.222 1.889

III. LOG-SPIKE-TIMING NEURON AND GAS RECOGNITION

ALGORITHM

The circuit shown in Figure 2.a is used to transform the
resistance Rs of the sensor to voltage outputs featuring a
logarithmic relationship with respect to the resistance. Using
Vr as a reference voltage, Rs is converted into Vs using
the logarithmic readout circuit of Figure 2.a, where a Base-
Collector shorted bipolar transistor is used to generate the
logarithmic voltage output from Rs. I0 is a current generated
by the baseline resistance R0, using the same method (with a
different reference voltage) in the calibration stage. By setting
proper current mirror ratios, Vs < V0 can be ensured, which
validates the spiking neuron circuit. Figure 2.b shows the
spiking neuron circuit. When the clock signal clk is high, the
membrane voltage Vm is set to Vs by transistor M1. When the
clock transits to low, the membrane voltage begins to integrate
until it reaches V0, with a slope set by IE . When Vm = V0,
the comparator triggers and the voltage Vm increases sharply
since M2 is turned on. At the same time a spike is generated
at the output. The membrane voltage is then reset by transistor
M3. The width of the spike is determined by the current in
M11, which is set by the bias voltage Vp, and the value of
capacitor C1.
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Fig. 2. (a) The resistance to log-output circuit. (b) The integrate and fire
(spiking) neuron.

From Figure 2, the equation for the logarithmic spike timing
delay is given as:
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IE · ∆Tij = B + A ln[
(Rs)ij

(R0)ij
] (3)

where ∆Tij is the timing delay for a neuron to generate
a spike after the integration starts, or the time-to-the-first-
spike (TFS). A and B are constants determined by the circuit
parameters and are the same for all the neurons.

By setting IE according to the value of aij , Eq. (3) can be
rewritten as:

aij · ∆Tij = B + A ln[
(Rs)ij

(R0)ij
] (4)

where aij is the parameter with values listed in Table 1.
The use of aij coefficients instead of rij in Eq. (4) is selected
because of the wide dynamic range of rij , i.e. ri1 → (0.0043
- 0.0287), ri2 → (0.972 - 2.436) and ri3 → (0.0018 - 0.005).
So with different j, a 10-bit current source should be used
to cover the 3 decades variation. Similarly, with different i,
at least 8-bit should be used for the sake of computation
accuracy. Thus a current source with 18-bit is required, which
is hard to implement. However, using aij , with a range of (1 -
6.674) shown in Table I, a 10-bit current source is sufficient.
Combining Eq. (1) and (2) with Eq. (4) we can write:

∆Tij = B · min(rij)
rij

+ A · min(rij)
rij

· ln αij

+A · min(rij) ln Cj , j = 1;
(5)

∆Tij = B · min(rij)
rij

+ A · min(rij)
rij

· ln αij

+A · min(rij) · Cj , j = 2, 3.

(6)

It should be noted that j = 1, 2 or 3, correspond to
Hydrogen, Ethanol and Carbon monoxide, respectively. Thus
for each gas, we can compute the relative position (interval)
of two neighboring spikes in the 16-spike sequence as:

∆Tij − ∆Tqj = B · min(rij)
rij

+ A · min(rij)
rij

· ln αij

−(B · min(rij)
rqj

+ A · min(rij)
rqj

· ln αqj)
(7)

Where q and j represent two individual neurons and
min(rij) = min(rqj). Eq. (7) indicates that the relative
position of the spike is unique for each gas and independent
of the gas concentration. This very interesting feature can be
used to perform efficient gas recognition.

IV. RESULTS AND DISCUSSION

The logarithmic spike-timing encoding circuit was designed
using ALCATEL 0.35 µm CMOS process and simulated using
CADENCE Spectre. The current I0 and IE were simulated
using ideal sources, where aij = 1 corresponds to IE = 1 nA.
Figure 3.a and b illustrate the simulated outputs of the circuit
shown in Figure 2.a and b, respectively. Figure 3.a shows that a
resistance input is converted to voltage output in a logarithmic

relationship. Figure 3.b shows simulation results of the clock
signal, the neuron membrane voltage Vm and the spike output
of the logarithmic spike timing neuron, illustrated in Figure
2.b. Initially, when the clock is high, the membrane voltage is
set to Vs. When the clock signal is switched low (at about 2
ms), the membrane voltage begins to integrate. The slope of
the integration curve is determined by IE in Figure 2.b. When
Vm reaches V0, a spike is generated at the output (the spike
node in Figure 2.b). The spike lasts for about 150 ns. The
integration and spike process is repeated with a period of 5
ms.

a.

b.

Fig. 3. (a) Response of the resistance to log-output circuit. (b) Spiking neuron
circuit simulation result. Waveforms from top to bottom are the control signal,
the neuron membrane voltage and the spike output, respectively.

Figure 4 - 6 illustrate the encoding circuit responses to
different gases with different concentrations. It should be
noted that the circuit was tested with real gas sensor data.
Each neuron in the 4×4 encoding circuit uses Rs and R0

corresponding to a given sensor in the integrated sensor array.
Different values of IE are set according to aij listed in Table
I for different gases to validate the algorithm described in
section III. As shown in Figure 4, when the target gas is
Hydrogen, the 10th neuron generates the first spike. The 16
spikes are labelled and a unique sequence is obtained. The
sequence is insensitive to changes in gas concentration. The
same experiment was repeated for Ethanol and Carbon monox-
ide. Figure 5 and 6 show different spiking sequences from
Hydrogen. In each case, when the gas concentration increases,
the time delay to the first spike in the sequence decreases.
The spike sequence (the relative position) and spike patten
(the time interval of neighboring spikes) are again insensitive
to changes in gas concentration. Each gas generates a unique
spike sequence which can be used to discriminate between
different gases. The concentration information is encoded in
TFS information.
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Fig. 4. Circuit’s response to Hydrogen at 25 PPM , 50 PPM and 75 PPM,
from top to bottom. The TFS is 0.648 ms, 0.471 ms and 0.389 ms, respectively.

V. CONCLUSION

A 4×4 logarithmic spike-timing encoding circuit is de-
signed and simulated in this paper. Tested with real data
from an integrated tin oxide gas sensor array, this encoding
circuit can generate unique spike sequence for different analyte
gases. The unique spike sequence is independent of the gas
concentration, thus can be used to discriminate between dif-
ferent gases. Using a relatively simple structure, this encoding
scheme illustrates powerful computation capabilities.

Fig. 5. Circuit’s response to Ethanol at 50 PPM, 100 PPM and 150 PPM,
from top to bottom. The TFS is 0.173 ms, 0.111 ms and 0.067 ms, respectively.
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Fig. 6. Circuit’s response to Carbon monoxide at 50 PPM, 100 PPM and
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