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a b s t r a c t

The human perceptual system performs rapid processing within the early visual system: low spatial

frequency information is processed rapidly through magnocellular layers, whereas the parvocellular

layers process all the spatial frequencies more slowly. The purpose of the present paper is to test the

usefulness of low spatial frequency (LSF) information compared to high spatial frequency (HSF) and

by artificial neural networks. The connectionist modeling results show that an LSF information provided

by the frequency domain is sufficient for a distributed neural network to correctly classify EFE, even

when all the spatial information relating to these images is discarded. These results suggest that the

HSF signal, which is also present in BSF faces, acts as a source of noisy information for classification

tasks in an artificial neural system.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Cognitive neuroscience data

The purpose of the present article is to determine whether LSF
components are sufficient for efficient categorization of an EFE.
This hypothesis is based on different neuroimaging and cognitive
science experiments showing that the human cognitive system
may have a fast way of accessing LSF components relating to
threat recognition in the visual environment [23,14,38]. For
instance, a neuroimaging study (functional MRI; [38]) suggests
the possibility of a preferential link between magnocellular layers
in the lateral geniculate nucleus (LGN) and the amygdala. This
study [38] revealed the existence of a hemodynamic response at
the level of a subcortical pathway involving the superior
colliculus, the pulvinar and the amygdala when participants
processed LSF pictures of faces depicting a fearful expression
compared to LSF faces displaying a neutral expression. These
results, therefore, suggest that the transmission of the signal
associated with the facial expression of fear might bypass the
primary visual cortex by taking a subcortical pathway [10,14],
ll rights reserved.
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possibly emanating from the magnocellular layers in the LGN,
which transports the low spatial frequency information very
quickly. This type of fast access to visual information might be of
particular value for increasing sensory exposure to potentially
dangerous events [37]. LSF and HSF stimuli are processed by two
different visual streams at the level of the lateral geniculate
nucleus. Whereas the magnocellular neurons primarily provide
rapid, but low spatial frequency cues which encode configural
features as well as brightness and motion, the parvocellular
neurons provide slower, but also higher spatial frequency
information (finer visual details) about local shape features, color
and texture [19]. Conversely, this fMRI study [38] also showed
that faces filtered at high spatial frequencies only slightly
activated the amygdala and that the signal activated different
structures in the ventral pathway (the occipito-temporal cortex
and the face fusiform area). This result is corroborated by ERP
studies [29].

Thus, the underlying question we address in the current paper
is to determine if the biological structure of the human cognitive
system is adapted to the computational properties of the visual
environment when providing rapid access to an LSF information
in a suitable EFE recognition task. In other words, we assume
that the phylogenetic development of the human neural
structures dedicated to categorization of an EFE may be such as
to provide faster access to coarse scale information conveyed by
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magnocellular neurons, because this information is more efficient
for categorization of EFE.

1.2. Artificial neural networks and emotional facial expressions

A number of different methods for the modeling of artificial
systems capable of performing emotional facial expression
recognition tasks have been reported in the literature [3]. Among
these different recognition systems, the use of artificial neural
networks permits an efficient classification of an EFE [16]. The
first step involved in the use of connectionist networks consists of
compressing the visual information. Thus, authors have suggested
using radial basis function (or RBF) networks consisting of
Gaussian receptive fields which compress the information relat-
ing to various parts of an image [7,28]. However, different studies
have shown that the use of Gabor wavelets permits a better
modeling of the receptive fields of the simple cells of the primary
visual cortex [5]. This research has shown that the statistical
evaluation of the residual error between the difference in the
response profiles of V1 simple cells and Gabor filters is not
distinguishable from chance [11,12,39,40] therefore suggesting
Gabor wavelets for face recognition tasks performed by artificial
systems. Using this technique, series of Gabor wavelets are
convolved with specific parts of the image, in order to extract
the information relating to different wavelengths and different
orientations. Similarly, [16] successfully used Gabor wavelets in
combination with a Support Vector Machine (SVM) for the static
or dynamic recognition of an EFE [2]. Finally, [15,4] have shown
that the convolution of Gabor wavelets, which are sensitive to
different wavelengths and different orientations using a sliding
window applied to the entire image permits reliable categoriza-
tion, which is comparable to human data when the wavelets are
associated with an SVM, discriminant analysis [18] or an artificial
neural network [4].

The computational model that we propose in this study is very
similar to the model proposed by Dailey et al. [4] but with two
differences. At the level of the perceptual encoding of the stimuli,
the Gabor wavelets are implemented not in the spatial domain,
but in the frequency domain by means of the modulus of the
discrete Fourier transform (DFT). Each wavelet is therefore
multiplied by the local energy spectrum of the Fourier transform.
This local energy spectrum represents the quantity of energy
associated with each spatial frequency and each orientation,
independently of the spatial location of the wavelet. This is
convenient because (i) it avoids a subsequent visual data
compression step and (ii) it makes the representation of the
image (i.e. the output computed by the Gabor filters) phase
invariant (as V1 complex cells [6]). The second difference in our
model can be found in the artificial neural network, which
simulates the association between the perceptual output of the
stimuli and the category label which encodes each EFE category.
Dailey et al. [4] used a single layer perceptron in association with
the softmax activation function at the level of the output layer, in
order to perform non-linear categorization of their images,
whereas we used the standard back-propagation algorithm on a
multi-layer perceptron [20,31]. This actually represents small
differences with an exception, however, that our method actually
constitutes a novel approach to visual data compression that
deserves to be discussed in the light of a comparison with the
methods used previously [2,4,15,16].

1.3. Visual data compression

The main difference between our perceptual model of vision
and previous models proposed in [2,4,15,16] resides at the level of
visual data compression. Performing Gabor filtering in the spatial
domain results in a huge perceptual vector (for example, a 40,600
vector size in [4]). Therefore, Gabor filtering in the spatial domain
requires an additional step in order to reduce the size of the
perceptual layer for subsequent neural network processes. For
instance, some authors [4] have chosen to reduce the perceptual
space by means of a ‘‘gestalt layer’’ produced by means of a
principal component analysis (PCA), and then focusing neural
computation on the first 50 eigenvectors. Using this technique,
they have obtained efficient results for an EFE categorization.
However, this technique raises an important methodological
problem given the objectives of the present article. It has been
shown elsewhere that the first eigenvectors correlate highly with
LSF information [1]. In other words, virtually all the eigenvectors
are necessary to retain HSF details, with the result that it is not
possible to reduce visual information, while investigating the role
of SF channel when using this method.

Another way to reduce the size of visual information for
subsequent processing in an artificial neural network is to use
feature selection algorithm such as Adaboost [16]. Adaboost is an
efficient technique for selecting Gabor filters that are relevant for a
subsequent associative task (for example, categorizing an EFE). In
other words, Adaboost selects different Gabor filters that are sensitive
to the different SF or orientations that are necessary to categorize
different EFE. However, we did not use this algorithm to test the
second main hypothesis of this paper, namely that an efficient
categorization of an EFE can be obtained even after the spatial
location of the Gabor filter has been completely removed. This
hypothesis is based on biological evidence that is described below.

It is possible to perform Gabor filtering by means of a
convolution of a Gabor kernel in the spatial domain (at a specific
location or within a sliding window), which is the formal
equivalent to a multiplication of this Gabor filter in the Fourier
domain. When this multiplication is applied to the Fourier
transform of the entire image, this method resembles a type of
holistic vision and means that each Gabor filter provides an
average energy value for the whole image. The originality of this
method is that it does away with spatial locations.

At a methodological level, it has the advantage of retaining
exactly the same amount of information, in quantitative and
qualitative terms, for each SF channel, thus making it possible to
compare the different SF channels in the most balanced way
possible. It should also be noted that all the main references in the
same field [2,4,15,16] as our current perceptual model, also use
the energy spectrum of the Gabor filters, and thus discard the
phase information necessary to reconstruct the spatial informa-
tion of an original image. However, using the magnitude spectrum
of Gabor filters within a sliding window is just one step on the
way towards eliminating spatial information: it removes phase
information which is important for the spatial reconstruction of
the image but retains the spatial location of the filters. In this
paper, we will show that we can go a step further in removing
spatial location for the purposes of the efficient categorization of
an EFE. At a theoretical level, we assume that taking an average
energy value of the Gabor filters over the whole image might be
sufficient for the efficient categorization of an EFE. This assump-
tion is based in part on biological data reported in a single-cell
recording study, which showed that neurons in the medial
temporal lobe (MTL) respond independently to spatial location
[30]. In other words, neurons become less and less sensitive to
spatial location during the bottom-up process from the retina to
the temporal lobes, with the result being a completely abstract
representation at the end of this process (at the level of the MTL).
In other words, in this paper, we propose the provocative idea that
spatial location might not be necessary for an efficient categor-
ization of complex stimuli such as an EFE.
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The first simulation is based on a limited but widely used
database of EFE: the pictures of emotional affect (POFA) Database
[8]. The aim of this pilot simulation is to determine whether the
superiority of LSF signals for the categorization of EFE emerges
even with a very small number of training exemplars. Simulation
2 was then designed to confirm the results obtained in Simulation
1 using a broader database, the Karolinska Directed Emotional Faces

(KDEF) [17] as well as to extend this result to the full spectrum of
spatial frequency channels. We have used the KDEF and POFA not
only because they are two commonly employed databases, but
also because they consist of very carefully controlled pictures
selected for important neuroimaging, behavioral and connection-
ist modeling papers [8,17,24,38] in the field of EFE categorization.
To summarize, the aim of this paper was to test the efficiency of
different SF channels on stimuli that were carefully controlled for
in neuroimaging and behavioral experiments on the basis of
commonly used and standardized computational methods (Gabor
filters at the perceptual level and connectionist networks at the
associative level).
2. Simulation 1. Pictures of emotional affect database.

2.1. Method

2.1.1. Neural network

To perform our simulations, we used an image database of
gray-scale images of facial expressions. The size of the images was
N�N (with N¼256 pixels). First, we applied a Hann window to
avoid boundary effects in the subsequent Fourier transform.
Boundary effects could result in a bias toward an over-represen-
tation of cardinal orientations, and the Hann window is frequently
used to suppress this bias. The following formula describes the
one-dimensional Hann window of size N (i¼0, ..., N–1) applied
vertically and horizontally to each image by pixelwise multi-
plication

wðiÞ ¼ 0:5�0:5� cos
2pi

N

� �

Next, we applied Gabor receptive fields in the spectral domain.
Multiplying a Gabor receptive field in the spectral domain is
equivalent to a convolution in the spatial domain. It is therefore
possible to perform the filtering in the spectral domain by
multiplying the spatial frequency information by the kernel of
the Gabor function
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x¼ ½x,y�t , fc ¼ ½f0 cosy,�f0 siny�t

u¼ ½cosy,siny�t , u? ¼ ½siny,cosy�t
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A Gabor filter is constructed with a Gaussian modulated by a
complex exponential: parameters sr and st of the Gaussian
determine the spatial extent of the filter. The vector fc with
modulus f0 and direction y describes this sine wave. In summary,
each individual image was transferred into the Fourier domain
and filtered by a set of Gabor filters determining energy
coefficients by coding the local energy spectra. We applied a
bank of 56 Gabor wavelets corresponding to seven different
spatial frequency channels (the distance between two consecutive
centers was one octave and spatial extent increased by one octave
per spatial frequency channel) and eight different orientations
(0, p/8, 2p/8, 3p/8, 4p/8, 5p/8, 6p/8, 7p/8), with respect to
biological data [6].

The second component then took the form of a back-
propagation neural network, whose aim was to classify the
output vectors provided by the Gabor filters [4,21,22]. Our
connectionist network was thus used as a computational tool
that allowed us to analyze the subtle and distinctive statistical
properties of the faces with respect to their emotional categories.
The connectionist network was a 3-layer back-propagation neural
network. We used the standard hetero-association training
algorithm, whose function is to associate each of the different
category exemplars with a specific output vector coding for each
category. During the feed-forward phase, activation was rescaled
by means of a sigmoid transfer function

f ðaÞ ¼
1

1þe�a

where f(a) is the output activation value and a is the sum of the
input activation vector multiplied by the input-to-hidden weight
matrix.

The input vector activation was then propagated through the
network, layer-by-layer, until it reaches the output layer. Then,
the supervised learning algorithm computed the sum of squared
error (SSE)

E¼
1

2

X
n

X
k

ðtpk�opkÞ
2

In this equation, p indexes the pattern in the training set, k

indexes the output nodes, tpk the desired output for the kth output
node for the pth pattern, opk the observed output for the kth

output node for the pth pattern.
Then, the error signal was computed, using the standard back-

propagation algorithm [31] and back-propagated through the
network until convergence of the neural network. Fig. 1.

2.1.2. Stimuli

The stimuli used came from the picture of facial affect (POFA)
database [8]. We used the same pictures as in a deep electrode
ERP study [13]. The identities used are referred to as EM, JJ, PE,
WF, C, MF, MO, NR, PF and SW. These identities, presented face on,
are expressing 6 basic emotional expressions (joy, disgust, fear,
anger, sadness and surprise) to which a neutral expression was
added for control purposes (Fig. 2).

Each image was defined on a gray scale and was centered in a
256�256 pixel frame for computational reasons relating to the
symmetry of the rosette of Gabor wavelets applied to an image.
We then applied a low-pass Gaussian filter (Fig. 3) with a cut-off
frequency, which made it possible to retain the spatial
frequencies lower than 8 cycles per image for the LSF images
and higher than 24 cycles per image for the HSF images [33]. The
mean brightness of the stimuli was normalized at 90.3 on a scale
of 256 levels of gray for the LSF, HSF and BSF images.

2.1.3. Procedure

The neural network was used for simulations in hetero-
associative mode similar to [4], i.e. each output vector generated
by the Gabor wavelets for each of the images was associated with
a specific code relating to an EFE category (1 0 0 0 0 0 0 for angry
faces, 0 1 0 0 0 0 0 for disgust, 0 0 1 0 0 0 0 for fear, 0 0 0 1 0 0 0 for
joy, 0 0 0 0 1 0 0 for neutrality, 0 0 0 0 0 1 0 for sadness and 0 0 0 0
0 0 1 for surprise). The energy vectors produced by the Gabor
wavelets were standardized between 0 and 1 at the input to the
network and independently, in order to avoid inducing any bias in
favor of a spatial frequency or specific orientation. The network
architecture consisted of 56 input units (the energy response of



Fig. 1. Experimental procedure.

Fig. 2. Example of stimuli from the picture of facial affect database.

Fig. 3. Example of BSF, LSF (provided by magnocellular layers) and HSF faces (only

provided by parvocellular layers).
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the Gabor wavelets), 42 hidden units and 7 output units (the
category code for each category). The learning rate was fixed at
0.1 and the momentum at 0.9. The learning algorithm, the
procedure and the learning parameters were selected to corre-
spond to the parameters that are most widely used in the
literature. Modifying these parameters (number of hidden units,
learning rate, momentum) changed the speed of learning, but
under no circumstances the statistical properties associated with
each EFE or each spatial frequency channel. In other words,
increasing or reducing the learning speed induced a global
advantage for all the categories (and not just for one specific
category compared to another).

Learning phase: each trial started with the random selection of
63 learning exemplars (9 faces out of 10 for each of the 7 EFE
categories). The learning phase then consisted of associating each
of these 63 learning exemplars with the correct category code
over 1000 iterations.

Test phase: after learning each of the EFE expressed by 9
randomly selected actors, the network was tested for its ability to
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generalize to the tenth actor. The energy vector of each of the EFE
was provided at the input to the network, and we recorded the
output calculated at the output from the model. A ‘‘winner-take
all’’ procedure was then applied to the observed output, in order
to determine the network’s response to each EFE. This procedure
was applied 10 times for each network, with a new random
selection of the learning and test faces on each trial, for each
network, in order to calculate a correct response percentage on 10
different trials for each network. The dependent variable was the
percentage of correct responses after this procedure had been run
30 times.

2.2. Results

We performed an ANOVA with repeated measures on the EFE
category (joy, disgust, fear, anger, sadness, surprise and neutral) X
frequency channel (LSF, HSF, BSF), with the percentage of correct
responses as the dependent variable. The ANOVA revealed a
significant main effect of EFE type (F(6,174)¼22.3; MSE¼180;
po0.001). Exhaustive multiple comparisons (Tukey’s HSD)
showed that the categories anger (M¼70.78; SE¼2.65), sadness
(M¼68.56; SE¼1.91) and surprise (M¼69.56, SE¼2.05) were
significantly better recognized by the networks than the
other emotional expressions. At the same time, the ANOVA also
revealed a significant effect of frequency channel (F(2,58)¼156.2;
MSE¼182; po0.001) which took the form of a better categoriza-
tion of LSF information (M¼75.6; SE¼2.51) compared to both
the HSF information (M¼52.7; SE¼1.87; F(1,29)¼515.56;
MSE¼106.4; po0.001) and the BSF images (M¼60.2; SE¼2.51;
F(1,29)¼109.43; MSE¼225.6; po0.001).

The EFE X frequency channel interaction was also significant
here (F(12,348)¼12.9; MSE¼217; po0.001). As we expected, the
LSF resulted in better categorization performances (compared to
both the HSF and BSF images) on the faces expressing fear
(po0.001), joy (po0.001) and surprise (po0.001). The LSF
channel therefore permitted a better categorization than the
HSF channel (but not the BSF images) for the sad faces (po0.001).
In contrast, there was no significant advantage for the LSF
compared to the HSF channel for the recognition of disgust, anger
or for the neutral faces. Table 1.

2.3. Discussion

The data collected by the neural network enables us to perform
a precise computational analysis of the relevance of each
frequency channel in the recognition of specific EFE. The first
important insight contributed by this analysis is that the low
frequency channel leads to better overall EFE recognition and
categorization performance. These results are consistent with
human behavioral data showing that the low spatial frequencies
seem to be the ones that are most useful for the recognition of a
specific joyful, angry or neutral EFE, whereas the high spatial
Table 1
Mean correct percentage for each emotion and each spatial frequency channel.

Emotion Spatial frequency

BSF LSF HSF

Anger 65.4 77.8 68.2

Disgust 56.4 64.6 61.4

Fear 47.2 72 49

Happiness 44.2 81.6 42.6

Neutral 51.8 56 63.8

Sadness 72 79.6 47.2

Surprise 69.6 86.4 41.4
frequencies seem to be most useful in determining whether a face
is expressive or not [33].

The expressions of fear, joy and surprise were better identified
via the LSF than the HSF channel. The LSF images also resulted in
better performances than the BSF images for these three
expressions. As far as the expression of sadness is concerned,
this was recognized better in LSF than in HSF mode, but not better
than the BSF images. Finally, no advantage of the LSF over the HSF
was observed for the expressions of disgust, anger or neutrality.

Finally, we have to note that the overall computational
performance of the neural network is lower than that observed
in the main references in the field [2,4,15,16]. This could be due (i)
to the fact that spatial information is necessary and, therefore,
that applying Gabor filters in the frequency domain results in the
loss of diagnostic information that is important for the purposes
of EFE categorization or, alternatively, (ii) to the small training
patterns used. Indeed, 9 training exemplars may not be sufficient
to enable a back-propagation classifier to find the correct
boundaries among each category in the high-dimensional space
provided by the perceptual layer. It should also be noted that 9
training exemplars might not be sufficient for a human trained on
completely novel categories. The purpose of Simulation 2 was to
test this hypothesis.
3. Simulation 2. Karolinska directed emotional faces database

3.1. Method

3.1.1. Neural network

The neural network, parameters and procedure were strictly
identical to Simulation 1 except that we used 448 stimuli, 64
stimuli�7 emotions (from the KDEF database) for the training
session (instead of 9 stimuli�7 emotions in the POFA database,
Simulation 1) and 1 remaining item per emotion to test the
generalization property of the neural network. Categorization rate
was computed across 100 runs with a new test item being
selected at random for each run.

3.1.2. Stimuli

The stimuli used came from the Karolinska Directed Emotional
Faces (KDEF) database [17]. Among the 70 identities constituting
the database, 5 were removed because of bad lighting or low
image quality. We then applied a Hann window identical to that
used in Simulation 1. Each picture was converted to a gray-scale
image centered in a 256�256 pixel frame, and we applied band-
pass filters which increased by one octave between two
consecutive filters: below 8 CpI; 8–16 CpI; 16–32 CpI; 32–64
CpI, above 64 CpI (Fig. 4). The mean brightness was then
normalized to 118.71 for all images.

3.2. Results

The results reported in Table 2 indicate a consistent decrease
in categorization accuracy of the neural network on change-over
from LSF to HSF channels.

As in Simulation 1, we performed an ANOVA on the EFE
category (joy, disgust, fear, anger, sadness, surprise and neutral)
and X frequency channel (BSF; o8 CpI; 8–16 CpI; 16–32 CpI; 32–
64 CpI; 464 CpI). As in Simulation 1, the ANOVA revealed
a significant main effect of the type of EFE (F(6,3564)¼6.13;
MSE¼0.428; po0.001). The post-hoc Tukey test revealed that, for
this database, fearful and surprised faces were recognized
significantly better than angry and happy faces. The differences
between all the other EFE were not significant. Of more interest



Fig. 4. Example of stimuli from the Karolinska Directed Emotional Faces database.

From the left to the right: BSF faces, o8 CpI; 8–16 CpI; 16–32 CpI; 32–64 CpI and

464 CpI.

Table 2
Mean correct percentage for each emotion and each spatial frequency channel.

Emotion Spatial frequency

BSF o8 CpI 8–16 CpI 16–32 CpI 32–64 CpI 464 CpI

Anger 93 96 96 94 84 57

Disgust 92 94 93 91 86 84

Fear 98 96 96 96 88 88

Happiness 96 95 94 94 79 70

Neutral 90 96 95 99 79 84

Sadness 92 94 97 98 91 63

Surprise 91 100 95 92 89 90

Grand Average 93.14 95.86 95.14 94.86 85.14 76.57

Table 3
Exhaustive pair-wise comparisons between all SF channels.

BSF o8 CpI 8–16 CpI 16–32 CpI 32–64 CpI 464 CpI

BSF 0.420351 0.918217 0.998911 0.000020 0.000020

o8 CpI 0.420351 0.953424 0.212609 0.000020 0.000020

8–16 CpI 0.918217 0.953424 0.736495 0.000020 0.000020

16–32 CpI 0.998911 0.212609 0.736495 0.000020 0.000020

32–64 CpI 0.000020 0.000020 0.000020 0.000020 0.000057

4 64 CpI 0.000020 0.000020 0.000020 0.000020 0.000057

M. Mermillod et al. / Neurocomputing 73 (2010) 2522–2531 2527
with regard to our hypothesis is the fact that we found a
significant effect of spatial frequency channels (F(5,594)¼53.9;
MSE¼0.103; po0.001), which reveals that the LSF information is
categorized better than the HSF information. Moreover there was
also a significant interaction effect between SF channels and EFE
(F(30,3564)¼7.14; MSE¼0.07; po0.001), which suggests that
different EFE might have different diagnostic SF channels.
However, as shown in Fig. 5, all EFE produced a decreased
recognition rate above 32 CpI.

In order to test this effect, we performed exhaustive pair-wise
comparisons between all SF channels on the basis of a post-hoc
Tukey test. Table 3.

Pair-wise comparisons reveal that the two highest SF channels
produced categorization rates significantly below each of the
other SF channels. Moreover there was no statistical difference
between the lower three SF channels, and there was no statistical
difference between these and the BSF faces.
3.3. Discussion

The results provided by Simulation 2 clearly support the
finding reported in Simulation 1, namely that LSF channels allow
more efficient categorization of EFE by the neural network. This
finding was particularly clear for SF above 32 CpI. Fig. 5 reveals
that the different diagnostic cues relevant for each individual EFE
might be based on different SF channels. Whereas, the diagnostic
cues seem to appear around 8 CpI for surprise, anger and disgust
for example, it seems that the diagnostic cues for sadness or
neutral expressions require higher SF channels around 16–32 CpI.
However, the results mainly revealed a considerable deterioration
in performance for virtually all EFE above 32 CpI.
It should also be noted that, with this larger training set, our
neural network (which uses a simpler method which eliminates
spatial information) performed categorization as efficiently as the
best references in the field, which use Gabor filters the spatial
domain [2,4,15,16]. However, we should mention that these
different simulations did not use the same database and further
simulations will be required to address the question of the
usefulness of spatial information on the basis of a strictly identical
database.
4. Conclusion

The current computational results suggest that LSF
information could be particularly effective for the recognition of
specific facial expressions. Our connectionist simulations revealed
a clear superiority of LSF over HSF information in both simula-
tions. At a computational level, these results are consistent with
[16]. These authors used Adaboost, SVM, and a linear discriminant
analysis to select Gabor filters, in the spatial domain, that result in
a higher categorization rate for each EFE. Using this method, they
showed that with a SF ranging from 3 up to 48 cycles per face, the
‘‘diagnostic features’’ may appear at around 17 cycles per face.
Our method is complementary to this ‘‘bottom-up’’ approach by
showing that, even with the same amount of information at each
scale and with a holistic vision which incorporates each spatial
location, LSF information permits better categorization perfor-
mance than HSF information for subsequent associative processes
in neural networks.

Another main finding, and an important difference compared
to [16], is the fact that this result was obtained irrespective of the
spatial location of the Gabor filters. This result, combined with the
fact that both methods discard important spatial information
(related to the phase of the signal), while using only the
magnitude of the output provided by the Gabor filters, raises an
important underlying theoretical question: is spatial location
necessary to perform reliable categorization and identification of
emotional expressions? As far as EFE are concerned, the answer
provided by Simulation 2 is clear: spatial location is not necessary,
at least at the level of LSF filters, for the efficient categorization of
the images. It is important to note here that we are going a step
further than other computer vision algorithms in discarding both
phase information and the spatial location of the Gabor filters in
our approach to this question.

This raises important potential implications concerning the
possibility of generalizing this finding to other categories of
objects. It is possible that, at least in the case of foveal vision (i.e. a
focus on the object of interest, inducing the removal of the
background to this object), a global representation of the
magnitude spectrum seems to be sufficient to efficiently categor-
ize EFE. With regard to generalization to other types of objects,
this finding could have important implications at a behavioral and
computational level. This means that spatial location could be



Fig. 5. Recognition rate for each EFE depending on different SF channels.
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important simply in that it focuses foveal vision on the object of
interest and that, once the focus has been established, a very
simple and fast access to the magnitude of the frequency
spectrum of the object is sufficient to categorize it reliably. Of
course, this hypothesis goes far beyond the scope of the current
paper and will require a careful examination of neural network
performance across a wide range of objects and natural scene
stimuli.

Concerning the superiority of LSF information in the
recognition of an EFE: at a qualitative level, recent behavioral



Table 4
Confusion matrix for BSF images in Simulation 1.

BSF Anger Disgust Fearful Happy Neutral Sad Surprise

Anger 65.4 1.4 7 9 11.6 0.2 5.4

Disgust 0.2 56.4 10.4 15.8 17 0 0.2

Fearful 7 11.2 47.2 3.4 15 1 15.2

Happy 17.2 18.2 1.4 44.2 5.8 0 13.2

Neutral 1.4 8.4 0 12.2 51.8 1.8 24.4

Sad 0.6 11.8 1 1 1.8 72 11.8

Surprise 9.6 1.2 5.2 5 3.2 6.2 69.6

Table 5
Confusion matrix for HSF images in Simulation 1.

HSF Anger Disgust Fearful Happy Neutral Sad Surprise

Anger 68.2 9.8 5 6.8 5 0 5.2

Disgust 0.2 61.4 0.4 9.6 6.8 9.6 12

Fearful 7.8 0 49 8.4 4 0 30.8

Happy 4.6 12 26.4 42.6 1.6 11.2 1.6

Neutral 1.6 10.6 10.4 2.4 63.8 1.8 9.4

Sad 0.6 9.4 5.6 14.8 7.4 47.2 15

Surprise 4 1.8 26.4 3.6 5.6 17.2 41.4
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results [35] suggest that the diagnostic scales relevant for each
EFE might be similar in both human subjects and our current
neural network simulation. In line with other results previously
reported in the literature at both the computational [1,9,25]
and behavioral levels [23,34,36,38], the results are probably due
to the computational properties of the LSF or HSF signals. As
suggested by [1], an LSF signal is probably less variable and
therefore more useful for categorization purposes than a HSF
signal. As far as the superiority of LSF channels over HSF channels
for categorization purposes is concerned, our results are also
consistent with the behavioral results obtained by [33], as well as
other studies conducted in the field of developmental psychology
[36] and neural network modeling [9] which have shown that HSF
information may in fact constitute a source of perceptual
interference in a categorization task. In fact, unlike the HSF
signal, the LSF signal is very stable in terms of its perceptual
variability, thus explaining the high correlation which exists
between the initial eigenvectors of a PCA and the LSF signal [1].
Given this view, the HSF information would not be at all effective
in an EFE categorization task even though this information
could be of crucial importance for other cognitive tasks,
for example finding the identity of a specific individual. It should
be noted that the performance impairment due to the HSF signal
also induced a considerable impairment in performance on the
BSF images in Simulation 1 and a slight impairment in Simulation
2. This represents a major difference compared to behavioral
results obtained in humans. In effect, human participants achieve
better performances when confronted with the BSF images: they
do not therefore seem to be sensitive to the perceptual
interference generated by the HSF signal in the case of BSF
images. This is an important avenue for future research in the
fields of psychology and connectionist modeling. Indeed, it is
possible that the coarse-to-fine integration process observed in
humans [26,27,32] is associated with a mechanism, which
optimizes the integration of the HSF information within the
primary structure supplied by the LSF information. Whereas the
connectionist network makes identical use of each frequency
channel in parallel, humans perform a rapid, initial analysis of the
LSF information which complements and refines the signal
provided by the HSF information. This process might take
advantage of the computational properties of both LSF and HSF
information.

Concerning the importance of spatial information, further
simulations will have to be performed to test whether
this superiority of LSF information persists in the case of spatially
located Gabor filters. It is possible that HSF information might
potentially be superior if faces are carefully aligned across trials
and spatial information is retained for neural computation.
However, this new line of research raises several questions: what
level of translation would impair the performance of a categor-
ization system which uses HSF channels? Are such HSF channels
more sensitive to other geometric transformations (such as
rotation or depth for example) than LSF channels? These
important questions will have to be carefully addressed in future
neural network studies. As a result, new simulations designed to
test the effect of a superiority of LSF channels with a sliding
window will have to overcome two major problems: it will be
necessary (i) to reduce the extent of the perceptual layer for
subsequent neural network processes (using PCA or feature
selection), while at both the quantitative and qualitative levels,
retaining the same amount of information for each SF channel and
(ii) to determine an alignment condition and other geometrical
transformations, which would make it possible to use HSF
information for categorization purpose. However, these different
methodological and theoretical considerations do not detract
from the finding reported in the current paper, namely that LSF
information concerning the global amplitude spectrum is suffi-

cient for the efficient categorization of EFE.
In addition, this theoretical point raises other questions at a

biological level. For example, we can assume that the human
perceptual system has developed to adapt to these computational
properties of LSF and HSF channels. This means that the structure
of the perceptual system in terms of spatial and temporal
frequency properties (at the level of the retina, as well as the
magno-, parvo- and koniocellular layers and also within V1 and
subsequent cortical areas) could be related to the computational
properties of the environment. Again, a coarse-to-fine bias
[26,27,32] might constitute the best way of avoiding the problem
of the potential sensitivity of HSF channels to geometric
transformation (translation, rotation or depth). This question of
whether the anatomical and functional properties of the human
primary visual system have adapted to the computational
properties of the physical environment has to be carefully
addressed in future studies in the fields of cognitive neuroscience,
psychology and neural computation.
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Tables 4–6.
Simulation 2

Tables 7–12.



Table 6
Confusion matrix for LSF images in Simulation 1.

LSF Anger Disgust Fearful Happy Neutral Sad Surprise

Anger 77.8 0 0.4 1.4 13.8 0 6.6

Disgust 9.2 64.6 9 0.2 0.8 0 16.2

Fearful 0 13.8 72 12.2 0.2 0 1.8

Happy 9.6 0.2 1.4 81.6 5.8 0 1.4

Neutral 14.4 7 0.4 13 56 5 4.2

Sad 1.2 0.4 3.2 0 15.4 79.6 0.2

Surprise 12.2 1 0 0 0 0.4 86.4

Table 7
Confusion matrix for BSF images in Simulation 2.

BSF Anger Disgust Fearful Happy Neutral Sad Surprise

Anger 93 1 1 2 2 1 0

Disgust 1 92 1 1 1 4 0

Fearful 1 0 98 0 0 1 0

Happy 0 0 1 96 3 0 0

Neutral 0 1 2 5 90 1 1

Sad 0 2 5 0 0 92 1

Surprise 0 2 1 3 3 0 91

Table 8
Confusion matrix for o8CpI images in Simulation 2.

o8 CpI Anger Disgust Fearful Happy Neutral Sad Surprise

Anger 96 0 0 1 0 0 3

Disgust 1 94 2 0 0 0 3

Fearful 0 1 96 1 0 2 0

Happy 1 0 0 95 1 2 1

Neutral 0 0 0 4 96 0 0

Sad 0 0 0 4 1 94 1

Surprise 0 0 0 0 0 0 100

Table 9
Confusion matrix for 8–16 CpI images in Simulation 2.

8–16CpI Anger Disgust Fearful Happy Neutral Sad Surprise

Anger 96 1 0 1 1 0 1

Disgust 0 93 0 1 1 3 2

Fearful 0 0 96 1 0 1 2

Happy 2 0 0 94 1 2 1

Neutral 0 2 0 1 95 2 0

Sad 1 1 1 0 0 97 0

Surprise 0 3 2 0 0 0 95

Table 10
Confusion matrix for 16–32 CpI images in Simulation 2.

16–32 CpI Anger Disgust Fearful Happy Neutral Sad Surprise

Anger 94 1 1 4 0 0 0

Disgust 0 91 4 0 1 0 4

Fearful 0 2 96 0 1 0 1

Happy 1 1 1 94 1 0 2

Neutral 0 0 1 0 99 0 0

Sad 0 0 0 2 0 98 0

Surprise 0 3 2 1 1 1 92

Table 11
Confusion matrix for 32–64 CpI images in Simulation 2.

32–64 CpI Anger Disgust Fearful Happy Neutral Sad Surprise

Anger 84 4 3 1 5 2 1

Disgust 4 86 0 2 4 0 4

Fearful 1 1 88 2 0 5 3

Happy 7 3 2 79 4 3 2

Neutral 9 4 1 5 79 1 1

Sad 2 0 1 6 0 91 0

Surprise 3 2 2 2 1 1 89

Table 12
Confusion matrix for 464 CpI images in Simulation 2.

464 CpI Anger Disgust Fearful Happy Neutral Sad Surprise

Anger 57 5 2 15 3 15 3

Disgust 4 84 1 10 0 0 1

Fearful 3 1 88 5 1 0 2

Happy 11 8 2 70 2 4 3

Neutral 3 3 4 2 84 3 1

Sad 14 3 0 9 8 63 3

Surprise 3 0 3 1 1 2 90
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at the Université Blaise Pascal, Clermont-Ferrand,
France. Since September 2009, he has been Full
Professor at the Université de Bourgogne. His current
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