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Mareschal, French, and Quinn (2000) and Mareschal, Quinn, and French (2002)
have proposed a connectionist model of visual categorization in 3- to 4-month-old
infants that simulates and predicts previously unexplained behavioural effects
such as the asymmetric categorization effect (French, Mareschal, Mermillod, &
Quinn, 2004). In the current paper, we show that the model’s ability to simulate
the asymmetry depends on the correlational structure of the stimuli. These results
are important given that adults (Anderson & Fincham, 1996) as well as infants
(Younger & Cohen, 1986) are able to rely on correlation information to perform
visual categorization. At a behavioural level, the current paper suggests that pure
bottom-up processes, based on the correlational structure of the categories, could
explain the disappearance of the asymmetry in older 10-month-old infants (Furrer
& Younger, 2005). Moreover, our results also raise new challenges for visual
categorization models that attempt to simulate the shift from asymmetric
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categorization in 3- to 4-month-old to symmetric categorization in 10-month-old
infants (Shultz & Cohen, 2004; Westermann & Mareschal, 2004, 2012).

Keywords: Visual categorization; Infancy; Neural network modelling.

Science evolves by revealing the limitations and constraints of theoretical

models that attempt to explain empirical results. In psychology, parallel
and distributed processes have been shown to provide an extremely reliable

and parsimonious account of many different cognitive processes including

infants’ visual categorization skills, i.e., the capacity to mentally group

together similar things that exist in the world. The aim of this brief report is

to reveal the limitations and constraints of parallel and distributed processes

for the simulation of categorization capacities in 3- to 4-month-old infants

(French, Mareschal, Mermillod, & Quinn, 2004; French, Mermillod, Quinn, &

Mareschal, 2001; Mareschal & French, 2000; Mareschal, French, & Quinn,
2000; Mareschal, Quinn, & French, 2002). As stated in a recent paper

(Westermann & Mareschal, 2012, p. 6), ‘‘[w]hile these models were successful

in explaining mechanisms underlying object categorization in 3 to 4-month-

olds, they did not account for developmental change’’. In the current paper, we

will show that the original model (Mareschal & French, 2000; Mareschal et al.,

2000), like other models designed to simulate this asymmetry (Shultz &

Cohen, 2004; Westermann & Mareschal, 2004, 2012), is subject to significant

constraints when attempting to simulate 3- to 4-month-olds’ visual categor-
ization processes and is actually a better model of the processes at work in

older infants.

Simulating the asymmetric categorization effect observed in
3- to 4-month-old infants

The empirical effect, as revealed by basic-level visual categories in Quinn,

Eimas, and Rosenkrantz (1993), was as follows: When 3- to 4-month-old

infants are familiarized on the Cat category, they seem to form a perceptual

representation of cats that excludes dogs. On the other hand, when they are

familiarized on the Dog category, they are not able to categorize a new cat as

coming from a new category. That is, the Cat and Dog categories have

asymmetric exclusivity: Cat excludes dogs, but Dog does not exclude cats

(Quinn et al., 1993). In an attempt to propose a theoretical underpinning for
this effect, Mareschal et al. (2000) suggested that the exclusivity difference

might reflect an asymmetric relation in the distribution of feature values used

to characterize the two sets of images. Indeed, these authors found that, in

the image set used by Quinn et al. (1993), the large majority of cat feature

values were subsumed within the distribution of the broader dog feature

values. Furthermore, the majority of dog feature values did not fall within
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the distribution of cat feature values. Thus, at the level of individual features,

most cats were plausible dogs, but most dogs were not plausible cats.

On the basis of connectionist modelling, Mareschal and French (2000)

and Mareschal et al. (2000, 2002) have proposed a connectionist auto-

encoder which makes it possible to replicate the effect observed in 3- to

4-month-olds. The analogy between the amount of error produced by the

neural network and the infant’s fixation time is as follows. During fixation,

the infant is thought to construct an interactive representation (Sokolov,

1963). The infant ceases to examine a stimulus once he or she has developed

a reliable internal representation of that stimulus. Similarly, learning in an

autoencoder consists of an iterative process of representation construction.

The network tries to adjust its internal representation of the input (i.e., by

adjusting the network weights) until it encodes enough information about

the input stimulus to be able to reconstruct that stimulus in the output. The

central assumption of this account is that stimuli that produce a high level of

initial output errors (that are poorly autoencoded) will take longer to encode

(and thus reduce the output errors) than stimuli that produce low initial

output error rates. This is because the network will require more iterations in

order to adjust the internal representations appropriately. Hence, the output

error rate produced when a novel stimulus is presented to the network is

interpreted as being equivalent to the time the infant spends looking at the

stimulus. The model has been found to successfully capture the category-

based looking time behaviours of 3- to 4-month-olds, including the subtle

asymmetric exclusivity in the extensions of the categories tested, such as

Cat and Dog (French et al., 2004; Mareschal et al., 2000, 2002; Quinn et al.,

1993).

Interestingly, Furrer and Younger (2005) reported that the asymmetric

categorization effect completely disappears in 10-month-old infants. Re-

search in the field of developmental psychology has therefore attempted to

investigate the shift in the asymmetry effect from that observed in the

behaviour of 3- to 4-month-old infants to that observed in 10-month-old

infants. The latest thinking in the field of developmental psychology

therefore assumes that what still needs to be understood is the shift in

behaviour between the ages of 3�4 months and 10 months (Furrer &

Younger, 2005; Westermann & Mareschal, 2012). For instance, Furrer and

Younger suggested that the disappearance of the asymmetric categorization

effect in 10-month-old infants could be related to the top-down conceptual

knowledge of these older infants (related to the ability to assign ‘‘cat’’ and

‘‘dog’’ label categories). Here, we propose the alternative hypothesis that the

disappearance of this asymmetry could be the result of simple bottom-up

processes that relate to the ability of 8- to 10-month-old infants to take

account of the correlational structure of the categories.
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The importance of correlational structures for visual
categorization

A variety of papers have shown that adults (Anderson & Fincham, 1996;

Crawford, Huttenlocher, & Hedges, 2006; R. D. Thomas, 1998), as well as

infants as young as 10 months of age (Gureckis & Love, 2004; Shultz & Cohen,

2004; Younger & Cohen, 1986), are able to use information about correlations

among the different features of the stimuli to produce correct categorizations

of visual and natural objects. Conversely, 4-month-old infants do not seem to

be able to use correlation information to perform categorization tasks

(Younger & Cohen, 1986). Therefore, investigating how the theoretical model

proposed in the literature responds to correlated attributes is both important in

the light of the fact that this information is broadly used by humans to perform

categorization (Anderson & Fincham, 1996; Younger & Cohen, 1986) and

crucial when we consider that most natural categories have features that

naturally covary. This idea is supported by the fact that the differences in the

size of different exemplars of any given species remain constant between scales

(Mandelbrot, 1977), thus leading to strong correlations among the different

features of each exemplar. This characteristic of living categories is an old and

well-known property in the life sciences and is often used for the characteriza-

tion of different species (Cavallini, 1995) or in studies of the maturation of

living organisms (Hughes & Tanner, 1970).

At a computational level, this question raises several related issues since

parallel and distributed connectionist networks are able to use not only the

distribution of feature values but also correlational information in order to

categorize visual stimuli, for example among different Gabor filters simulating

V1 neuron receptive fields (Mermillod, Bonin, Mondillon, Alleysson, &

Vermeulen, 2010; Mermillod, Vermeulen, Lundqvist, & Niedenthal, 2009).

Therefore, based on the assumption that parallel and distributed processes

are able to simulate visual categorization behaviour in 3- to 4-month-old

infants, the developmental sciences have embarked on a wide-ranging debate

aimed at understanding how artificial cognitive systems might explain the

shift from feature-based to correlation-based visual categorization stimuli

(Gureckis & Love, 2004; Shultz & Cohen, 2004; Westermann & Mareschal,

2004; but see also M. S. C. Thomas, 2004).

However, one recent paper (Mermillod, Vermeulen, Kaminski, Gentaz, &

Bonin, in press) has shown that the way in which the stimuli were encoded

in French et al. (2004) removed almost all the information relating to

the correlations among features of the cats and dogs categories. Therefore,

in order to test the impact of feature distribution in addition to that

of correlation information, we artificially created a pattern of correlated

features, which, however, had the same distribution properties as the original

simulations (French et al., 2004; Mareschal et al., 2000). The aim of the
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current paper is to show that a connectionist network is able to isolate and

differentiate between the two categories on the basis of correlational

information, even without the same distributions of feature values and

inclusion relationships present in the original simulations.

CONNECTIONIST SIMULATION: USING A CORRELATIONAL
STRUCTURE TO ELIMINATE THE ASYMMETRIC

CATEGORIZATION EFFECT

Stimuli

As in the original simulations, the networks were trained on the same

10 measurements of the stimuli used to familiarize the infants (i.e.,

horizontal extent, vertical extent, leg length, head length, head width, eye

separation, ear separation, nose length, nose width). However, in order to

test the effect of correlated attributes, we artificially modified the input
pattern (i.e., the feature values of the original stimuli used in Simulation 1 as

input/output for neural network simulations) in order to increase correla-

tions among features within each category. The set of correlated features was

generated by using one dog vector and one cat vector from the original

simulation (French et al., 2004). This vector was then multiplied 18 times by

a scalar number in order to create a pattern of perfectly correlated features

for 18 exemplars of one and the same category. Finally, we added some noise

in this matrix of perfectly correlated features by adding a small random
number in the range 0�4 for each feature. The aim was to obtain realistic

values (i.e., not perfectly correlated) of correlated features (Tables 1 and 2).

Finally, we ensured that all the features had the same distribution and

inclusion relationship (Figure 1) as in the original simulations (French et al.,

2004; Mareschal et al., 2000). We predicted that the introduction of

correlation information might allow the neural network to differentiate the

original categories despite their feature value distributions and inclusion

relationships.

Neural network procedure

We used exactly the same standard 10-8-10 feedforward backpropagation
autoencoder network as used by French et al. (2004) to model infant

categorization. This means that we had 10 input and output units (the

measurements of the 10 features) and 8 hidden units. Training parameters

were identical to those used in the original simulation.1 The vectors used for

this simulation were normalized between 0 and 1, feature by feature, across

1 Learning rate: 0.1, momentum: 0.9, Fahlman offset: 0.1.
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TABLE 1
Correlations among features of the Dog category

Head length Head width Eye separation Ear separation Ear length Nose length Nose width Leg length

Vertical

extent

Horizontal

extent

Head length 1 0.88 0.47 0.79 0.66 0.66 0.29 0.87 0.88 0.93

Head width 0.88 1 0.46 0.83 0.66 0.73 0.40 0.91 0.87 0.90

Eye separation 0.47 0.46 1 0.65 0.60 0.42 0.50 0.52 0.64 0.60

Ear separation 0.79 0.83 .065 1 0.61 0.72 0.53 0.86 0.92 0.92

Ear length 0.66 0.66 0.60 0.61 1 0.49 0.43 0.74 0.71 0.74

Nose length 0.66 0.73 0.42 0.72 0.49 1 0.38 0.72 0.68 0.73

Nose width 0.29 0.40 0.50 0.53 0.43 0.38 1 0.41 0.39 0.43

Leg length 0.87 0.91 0.52 0.86 0.74 0.72 0.41 1 0.93 0.95

Vertical extent 0.88 0.87 0.64 0.92 0.71 0.68 0.39 0.93 1 0.95

Horizontal extent 0.93 0.90 0.60 0.92 0.74 0.73 0.43 0.95 0.95 1
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TABLE 2
Correlations among features of the Cat category

Head

length

Head

width

Eye

separation

Ear

separation

Ear

length

Nose

length

Nose

width

Leg

length Vertical extent

Horizontal

extent

Head length 1 0.97 0.80 0.94 0.94 0.84 0.58 0.98 0.97 0.97

Head width 0.97 1 0.82 0.95 0.94 0.86 0.62 0.96 0.98 0.98

Eye separation 0.80 0.82 1 0.79 0.87 0.80 0.52 0.83 0.86 0.83

Ear separation 0.94 0.95 0.79 1 0.92 0.89 0.59 0.97 0.97 0.97

Ear length 0.94 0.94 0.87 0.92 1 0.88 0.62 0.95 0.96 0.95

Nose length 0.84 0.86 0.80 0.89 0.88 1 0.58 0.85 0.88 0.87

Nose width 0.58 0.62 0.52 0.59 0.62 0.58 1 0.59 0.62 0.63

Leg length 0.98 0.96 0.83 0.97 0.95 0.85 0.59 1 0.99 0.99

Vertical extent 0.97 0.98 0.86 0.97 0.96 0.88 0.62 0.99 1 0.99

Horizontal extent 0.97 0.98 0.83 0.97 0.95 0.87 0.63 0.99 0.99 1
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all of the 36 stimuli (i.e., 18 dogs and 18 cats). The networks were trained in

six batches of two patterns each until all outputs were within 0.2 of their

target values or for a maximum of 250 weight updates. Each batch of two

patterns was trained fully before the next batch of two patterns was
presented. This procedure was intended to mimic the paired presentation

technique used with infants. The error, as in the original simulations (French

et al., 2004; Mareschal & French, 1997; Mareschal et al., 2000), was the

maximum MSE produced by the activation of the output nodes compared

to the desired output. The results were averaged over 50 neural networks

with different initial random weights. Each network was first trained on

12 randomly selected exemplars selected from either the set of cat images or

the set of dog images. Once a network had learned to autoencode these
images to criteria, it was tested on six novel images from each of the two

categories. The output error level produced in response to the novel images

was a measure of the novelty of the images and was assumed to reflect the

infant’s looking time.

RESULTS

We observed a significant interaction between the type of training category
and the test category effect, F(1, 98) �164.19, p B.001, h2�.59. The model

brought about a significant increase in errors for cats after training on the

broad Dog category, F(1, 98) �74.34, p B.001. However, after being trained

on the narrow Cat category, the model also produced more errors on the

novel dog than on the novel cat exemplars, F(1, 98) �90.23, p B.001. As

expected, the correlation information provided by this new pattern of data
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Figure 1. Example of the feature distributions for the cat and dog exemplars. The dog distribution

(in red) subsumes the cat distribution (in blue). To view this figure in colour, please see the online issue

of the Journal.
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was sufficient to eliminate the asymmetry despite the feature value

distribution and inclusion relationship assumed to produce the asymmetry

in the original simulations (Figure 2).

DISCUSSION

No asymmetry was observed despite the variance distribution and inclusion

relationship present in the inputs. The connectionist model is able to use the

correlational structure of the two categories to identify the exemplars as

coming from different categories. It therefore seems that the original model

revealed an asymmetric categorization effect because of poor correlations in
the input data (Mermillod et al., in press). We assume that this could be due

to the way the data was encoded (measurements of responses to pictures

having different scales or orientations, for instance) and suggest that a more

realistic model of vision, for example using Gabor patches as a simulation

of V1 neural processes, would probably retain correlations across features

(Kaminski, Méary, Mermillod, & Gentaz, 2010, 2011; Mermillod, Vuilleumier,

Peyrin, Alleysson, & Marendaz, 2009).

CONCLUSION

These data clearly show that the manipulation of the distribution and

inclusion relationship is necessary but not in itself sufficient to explain the

asymmetric categorization effect reported by Quinn et al. (1993). Feature

Figure 2. Average neural network error produced in response to novel dogs or cats following

training with either the Cat or Dog category.
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correlation was not considered as a factor in the original model. However,

new simulations with correlated feature sets suggest that it has a massive

impact on the performance of the model. Regarding the visual categorization

properties at a behavioural level, 3- to 4-month-old infants do not as yet

seem to be sensitive to correlation information (Younger & Cohen, 1983,
1986). This behavioural characteristic therefore makes them sensitive only to

the feature value distribution and inclusion relationship, irrespective of the

correlational structure of the categories, and consequently allows the

asymmetry to appear. This hypothesis supports and extends empirical

evidence showing that the asymmetric categorization effect was reproduced

in 4-month-old but disappeared in 10-month-old infants (Furrer & Younger,

2005). However, Furrer and Younger (2005) assumed the use of top-down

conceptual knowledge (although this top-down hypothesis was not clearly
set out in their paper). Contrary to this hypothesis that top-down conceptual

knowledge is involved in differentiating the two categories, and in

accordance with various papers in the literature showing the importance

of correlations for visual categorization (Gureckis & Love, 2004; Shultz &

Cohen, 2004; Younger & Cohen, 1986), we propose here the parsimonious

hypothesis that simple bottom-up processes, related to the use of correla-

tional information provided by the stimuli, could be sufficient to remove the

asymmetry in 10-month-old infants. It might be possible to test these
hypotheses at the empirical level using stimuli similar to those used by

Younger and Cohen (1986), namely artificial animals comprising a set of

perceptually controlled features (legs, body, neck, head, etc.).

At a computational level, the mainstream of research in visual categor-

ization based on prototype models (Rosch, 1978), exemplar models

(Kruschke, 1992; Nosofsky, 1986), or even connectionist models (French

et al., 2004) has largely focused on feature value distributions and, to a lesser

extent, correlated feature (Anderson & Fincham, 1996; Shultz & Cohen,
2004; Younger & Cohen, 1986). However, our current results raise new

challenges for visual categorization models that attempt to simulate the shift

from asymmetric categorization in 3- to 4-month-old to symmetric

categorization in 10-month-old infants (Shultz & Cohen, 2004; Westermann

& Mareschal, 2004, 2012). Although feature value distribution is an

important factor that should be taken into account when simulating visual

categorization processes during infancy, correlations among features are at

least as important, and a reliable model of visual categorization has to take
both constraints into account at the level of the input data in order to

simulate this shift from asymmetric categorization to symmetric categoriza-

tion (M. S. C. Thomas, 2004). Note that the current connectionist

simulations clearly show that the ability (or the inability) of a simple

connectionist classifier to simulate (or not) the asymmetric categorization

effect is largely depending on the method used to encode the stimuli at a
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perceptual level. We can assume that a more realistic model of visual

perception, allowing the precise encoding of the correlations among different

features of natural objects, will be crucial to test the respective effects of

variance distribution and correlation information. Indeed, empirical studies

investigating the effects of these factors also have to ensure a correct coding

of the statistical properties of the stimuli by the participants. We can assume

that it should be the case in the haptic modality when the infants can

manipulate the objects (i.e., encoding the correlation information among the

different features) but not necessarily for static images presented in the visual

modality. Therefore, we suggest that a 3-D video of the stimuli could be

probably necessary to ensure a correct coding of the correlations among

features for subsequent empirical experiments.

To our knowledge, no computational model in the literature has

addressed this question by simultaneously taking account of all three

factors*(1) feature value distribution, (2) inclusion relationship, and

(3) correlated (vs. uncorrelated) features*when simulating this surprising

asymmetry. In our view, this represents a major shortcoming in the literature

since different computational models, as well as humans, are sensitive to

these different factors when performing visual categorization (Gureckis &

Love, 2004; Shultz & Cohen, 2004; Westermann & Mareschal, 2004;

Younger & Cohen, 1986). A reliable computational model of visual

categorization should be able to simulate human behaviour even if we add

new constraints to the model. By taking into account these three factors in

combination with the behavioural data available in the literature (Furrer &

Younger, 2005; Younger & Cohen, 1986), we have clearly shown that a

simple connectionist neural network probably provides a better model of

10-month-old infants’ categorization capacities, but not of the asymmetry

observed among 3- to 4-month-olds that still remains to be understood.
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