Distance perception of objects using visual-to-auditory sensory substitution: comparison of conversion methods based on sound intensity and envelope modulation

Camille Bordeau¹, Florian Scalvini², Cyrille Migniot², Julien Dubois², Maxime Ambard¹ ¹LEAD-CNRS UMR5022, Université Bourgogne Franche-Comté, Dijon, France ²ImViA EA 7535, Université Bourgogne Franche-Comté, Dijon, France

INTRODUCTION

Sensory substitution devices convey spatial information for the blind (Kristjánsson et al., 2017).

bordeau.camille@gmail.com

blind visual-toauditory SSD user approaching an obstacle (red). The camera (blue) is filming the front space.

DISCRIMINATION TASK

Preliminary results suggest comparable distance discrimination scores to others sensory substitution devices (Richardson et al., 2019). Distance discrimination scores are not significantly different between the two encoding schemes.

(cm) 30

Ð

Intensity is a major acoustical cue for auditory distance perception (Zahorik et al., 2005).

- Figure 2: The view of the camera and the corresponding heard sound. Sound intensity increases as the obstacle get closer.
- Envelope amplitude modulates the "audio-visual bounce" inducing effect" (Grassi et al., 2019; Sekuler et al., 1997).

audio-Figure The visual bounce inducing effect. The two identical visual stimuli are perceived as bouncing (left) instead of streaming (right) when a sound is played simultaneously or just after the stimuli impact. The effect is more pronounced when the sound is percussive.

Figure 6a: The distance discrimination task method (3-down/2-up staircase method).

The two targets (red filled circles) were placed relatively to the reference locations (little pink filled circles) at 80 $cm \pm d$ from the participant. Initial tested distance d was 50 cm. Staircase steps were -15 cm, \pm 5 cm and \pm 2.5 cm. The distance discrimination score was computed as the mean of *d* in the last two trials.

Figure 6b: The distance discrimination task results. Distance discrimination score as a function of distance encoding schemes. The average scores and the participants' individual scores are depicted. Error bars represent standard deviation. 10 participants (age: M = 27.2, SD = 3.58, 4 female). Encoding: $[F_{(1.9)} = 3.27, p = 0.100, \eta_p^2 = 0.270].$

LOCALIZATION TASK

Preliminary results show a great ability to perceive distance with both encoding schemes. They suggest a higher accuracy in distance perception when the encoding scheme combined intensity and percussiveness modulation.

Figure 7a: The distance localization task method (pointing method). The target (red filled circle) was placed at 7 distances (red circles) from 80 cm to 300 cm. The perceived distance (pink filled circle) was recorded with a tracked pointing tool.

in the context of visual-to-auditory substitution?

ENCODING SCHEMES

11 sighted blindfolded participants practiced a familiarization for both distance encoding schemes in a virtual environment.

Figure 4: The active audiomotor familiarization method. After a 120-seconds sighted familiarization, participants practiced a 60seconds blindfolded unguided active familiarization.

Video frames are converted into soundscapes composed of mixed stereophonic auditory pixels.

Figure 5: Examples of stereophonic auditory pixels as a function of target distance for tested distance both encoding schemes: intensity modulation (I, top), and intensity

through

250 Hz

Figure 7b: The distance localization task results. Perceived distance as a function of target distance with both encoding schemes.

Error bars represent standard deviation. Estimated trends (solid lines) for the 6 nearest distances and the optimal trend (black dashed line) are displayed. 10 participants (age: M = 26.7, SD = 3.33, 4 female). Distance: $[F_{(1,827)} = 232.08, p < 0.001, \eta_p^2 = 0.220].$ Encoding: $[F_{(1,827)} = 6.44, p = 0.010, \eta_p^2 = 0.008].$ Distance × Encoding: $[F_{(1,827)} = 6.71, p = 0.010, \eta_p^2 =$ 0.008]. $gain_{I} = 0.53$, $gain_{IP} = 0.75$, $t_{(827)} = 2.59$, p = 0.010, d = 0.0100.523.

DISCUSSION

- Distance of near objects is overestimated and distance of far objects is underestimated.
- The percussiveness of the sound might improve distance perception through a perceptual effect (impact-similar) and an attentional effect (Grassi et al., 2019).

REFERENCES

Grassi, M. & Casco, C. (2009). Audiovisual bounce-inducing effect : Attention alone does not explain why the discs are bouncing. Journal of Experimental Psychology : Human Perception and Performance, 35(1), 235-243. doi: 10.1037/a0013031. Kristjánsson, R., Moldoveanu, A., Jóhannesson, M. I., Balan, O., Spagnol, S., Valgeirsdóttir, V. V. & Unnthorsson, R. (2016). Designing sensory-substitution devices : Principles, pitfalls and potential. Restorative Neurology and Neuroscience, 34(5), 769-787. doi: 10.3233/rnn-160647. Richardson, M., Thar, J., Alvarez, J., Borchers, J., Ward, J. & Hamilton-Fletcher, G. (2019b). How Much Spatial Information Is Lost in the Sensory Substitution Process ? Comparing Visual, Tactile, and Auditory Approaches. Perception, 48(11), 1079-1103. doi: 10.1177/0301006619873194. Sekuler, R., Sekuler, A. B. & Lau, R. (1997). Sound alters visual motion perception. Nature, 385(6614), 308-308. doi: 10.1038/385308a0. Zahorik, P., Brungart, D. & Bronkhorst, A. (2005). Auditory distance perception in humans : A summary of past and present research. Acta Acustica united with Acustica, 91, 409-420.

pitch

(low